Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Macromol Rapid Commun ; 45(11): e2400036, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453138

RESUMEN

Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.


Asunto(s)
Polimerizacion , Resinas Sintéticas/química , Microesferas , Polímeros/química , Temperatura , Ensayo de Materiales , Propiedades de Superficie , Tamaño de la Partícula
2.
Biomacromolecules ; 24(11): 4622-4645, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37870458

RESUMEN

Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Polímeros/química , Liberación de Fármacos , Permeabilidad
3.
Macromol Rapid Commun ; 44(13): e2300034, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37154224

RESUMEN

Polymer alloys (PAs) are mixtures of two or more types of polymers to enhance the properties of polymeric materials. However, thermosets with crosslinked structures are immiscible and cannot be prepared PAs. Herein, two immiscible covalent adaptable networks containing phenoxy carbamate bonds are explored as the typical polymeric materials to prepare the hard-soft thermoset alloy (HSTA) by the interpenetrated dynamic crosslinked interface (IDCI) to enhance the toughness. Specifically, two types of polyurethane covalent adaptable networks with either high stiffness (thermoset) or extensibility (elastomer) are prepared, respectively. The granules of thermoset and elastomer are mixed and hot-pressed to prepare the HSTA. The HSTA shows improved mechanical properties with a toughness of 22.8 MJ m-3 which is 14 times higher than that of hard thermoset. In addition, the HSTA shows excellent impact-resistance property after 1000 punctures. Moreover, the obtained HSTA via addition of carbon nanotubes can significantly decrease the electric resistance over six orders of magnitudes as compared to the blending method, which is due to the distribution of the carbon nanotubes at the interfaces of the two networks.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Polímeros/química , Elastómeros , Conductividad Eléctrica
4.
Macromol Rapid Commun ; 44(13): e2300092, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029933

RESUMEN

Poly(amic acid) (PAA) materials as the precursor of polyimide generally show remarkably poor mechanical properties, thus limiting their application as the engineering plastics. In this study, it is demonstrated that the mechanical properties of PAA materials can be improved significantly for tens of folds with breaking strength >50 MPa, Young's modulus >400 MPa, and elongation at break >300% by incorporation of 20% (mol%) poly(propylene glycol) (PPO) soft segments. The optimization for suitable hard-soft composition with 20% PPO and the existence of various hydrogen bonds with different binding energies can dissipate energies efficiently, which simultaneously improve the material strength and toughness. In addition, PAA82 films exhibit excellent tolerance toward cyclic stretch, and have the capability to resist various harsh conditions including solar radiation testing (1 sun), heat (85 °C), alkalinity (pH 10), and acidity (pH 4) over one month. Noted that PAA82 films can be laminated with Kapton films, which show excellent resistance to ultrahigh (200 °C) and ultralow temperature (-196 °C). The laminated film also exhibits bulletproof property with a thickness of 6 mm. The strategy via modulation of hard-soft compositions and hydrogen bonds in PAA materials shows great potentials to improve the mechanical properties of polymeric materials.


Asunto(s)
Plásticos , Polímeros , Enlace de Hidrógeno , Polímeros/química , Temperatura , Calor
5.
Biomacromolecules ; 21(2): 921-929, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31961134

RESUMEN

A remarkable hallmark of cancer cells is the heterogeneous coexistence of overproduced intracellular glutathione (GSH) and a high level of reactive oxygen species (ROS) compared with those in normal cells, which have been frequently used as the stimuli to trigger drug release from the nanocarriers. Most of the stimuli-responsive delivery vehicles have been designed to respond to only one redox stimulus (e.g., GSH or ROS). Herein, we develop a GSH and ROS dual-responsive amphiphilic diblock copolymer prodrug (BCP) (GR-BCP) consisting of poly(ethylene glycol) (PEG)- and camptothecin (CPT)-conjugated poly(methacrylate) in the side chains via thioether bonds. In comparison, GSH or ROS single-responsive BCPs (G-BCPs or R-BCPs) were prepared, where CPT drugs were linked by disulfide or thioketal bonds, respectively. The three BCPs can form well-defined spherical micellar nanoparticles in an aqueous solution with a diameter of ∼50 nm. Compared with G-BCP and R-BCP, GR-BCP realized the highest cytotoxicity against HeLa cells with the half-inhibitory concentration (IC50) of 6.3 µM, which is much lower than 17.8 µM for G-BCP and 28.9 µM for R-BCP. Moreover, for in vivo antitumor performance, G-BCP, R-BCP, and GR-BCP showed similar efficiencies in blood circulation and tumor accumulation after intravenous injection. However, GR-BCP realized the most efficient tumor suppression with few side effects. Our findings demonstrate that intracellular GSH and ROS dual-responsive BCPs show a more efficient responsive drug release inside tumor cells for boosting the antitumor efficacy as compared with GSH or ROS single-responsive BCPs, which provides novel strategies for designing redox-responsive BCPs.


Asunto(s)
Antineoplásicos/metabolismo , Liberación de Fármacos/fisiología , Glutatión/metabolismo , Polímeros/metabolismo , Profármacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polímeros/administración & dosificación , Polímeros/química , Polimetil Metacrilato/administración & dosificación , Polimetil Metacrilato/química , Polimetil Metacrilato/metabolismo , Profármacos/administración & dosificación , Profármacos/química , Resultado del Tratamiento
6.
Bioconjug Chem ; 29(1): 23-28, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29232506

RESUMEN

Hydrophobic segments and amino moieties in polymeric nonviral gene vectors play important roles in overcoming a cascade of barriers for efficient gene delivery. However, it remains a great challenge to facilely construct well-defined multifunctional polymers through optimization of the amino and hydrophobic groups. Herein, we choose thiolactone chemistry to perform the ring opening reaction of varying hydrophobic groups-modified thiolactones by various amines to generate mercapto groups for further Michael addition reaction with poly[2-(acryloyloxy)ethyl methacrylate] (PAOEMA). Based on the combinatorial methodology, a series of multifunctional polymers were prepared and screened. The polymer (P3D) from tetraethylenepentamine and heptafluorobutyric acid-functionalized thiolactone is the most efficacious one with significantly higher gene transfection efficiency and lower cytotoxicity compared with polyethylenimine (PEI) (branched average Mw ∼ 25 000 Da) and Lipofectamine 2000. Cellular uptake and intracellular distribution studies indicate that P3D complexes show high-efficiency endocytosis and excellent endosomal escape. Accordingly, thiolactone chemistry-based combinatorial methodology allows for facile integration of multifunctional groups to prepare simultaneous efficacious and low-cytotoxic gene delivery vectors.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Lactonas/química , Polímeros/química , Compuestos de Sulfhidrilo/química , Transfección , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Células HeLa , Humanos , Lactonas/síntesis química , Polímeros/síntesis química , Compuestos de Sulfhidrilo/síntesis química , Transfección/métodos
7.
Chemistry ; 24(59): 15706-15724, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-29572992

RESUMEN

Therapeutic nanoreactors have been proposed as nanoplatforms to treat diseases through in situ production of therapeutic agents. When this treatment strategy is applied in cancer therapy, it can efficiently produce highly toxic anticancer drugs in situ from low-toxic prodrugs or some biomolecules in tumor tissues, which can maximize the therapeutic efficacy with a significantly low systemic toxicity. An ideal therapeutic nanoreactor can provide the reaction space, protect the loaded fragile catalysts, target the desired pathological site, and be selectively activated. In this minireview, we highlight the recent advances concerning the applications of therapeutic nanoreactors as in vivo nanoplatforms particularly in cancer therapy. Herein, the therapeutic nanoreactors are discussed on the basis of treatment strategies and various nanoparticles. Specifically, the treatment strategies of nanoreactors including single enzyme, single enzyme with chemodrugs, and multienzymes, as well as varying types of engineered nanoparticle-loaded active catalysts, primarily including liposomes, polymersomes, polymeric micelles, inorganic nanoparticles, and metal-organic framework (MOF) architectures, are documented and briefly discussed. Finally, we elucidate the current challenges to be addressed toward further development and translation into clinical applications of these therapeutic nanoreactors in cancer therapy.


Asunto(s)
Antineoplásicos/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Profármacos/química , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Medios de Contraste/química , Portadores de Fármacos/química , Humanos , Liposomas/química , Estructuras Metalorgánicas/química , Micelas , Tamaño de la Partícula , Polímeros/química , Profármacos/efectos adversos , Profármacos/uso terapéutico , Propiedades de Superficie
8.
Biomacromolecules ; 19(6): 1990-1998, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29420880

RESUMEN

Relative to normal cells, tumor cells lack adequate capability of reactive oxygen scavenging. Thus, tumor cells can be selectively killed by increasing the concentration of reactive oxygen species in tumor tissue. In this report, we construct an integrated multifunctional polymeric nanoparticle which can selectively improve hydrogen peroxide (H2O2) levels in tumor tissue and convert them into more active hydroxyl radicals by Fenton reaction. First, the diblock copolymers containing polyethylene glycol (PEG) and poly(glutamic acid) modified by ß-cyclodextrin (ß-CD) were synthesized. The block copolymer, ferrocenecarboxylic acid hexadecyl ester (DFc), and ascorbyl palmitate (PA) were coassembled in aqueous solution to obtain stable core-shell micelles through the inclusion complexation between ß-CD moieties in the block copolymer and ferrocene (Fc) groups from DFc. After intravenous injection, the particles achieved significant accumulation in tumor tissue where ascorbic acid at the pharmacological concentration promotes the production of H2O2, and subsequently Fenton reaction was catalyzed by Fc groups to produce hydroxyl radicals to efficiently kill cancer cells and suppress tumor growth. The micellar systems possess great potentials toward cancer therapy through synergistic H2O2 production and conversion into hydroxyl radicals specifically in tumor tissue.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Nanopartículas/química , Polímeros/química , Animales , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Ácido Ascórbico/farmacocinética , Ácido Ascórbico/farmacología , Femenino , Compuestos Ferrosos/química , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Inyecciones Intravenosas , Hierro/química , Células MCF-7 , Metalocenos , Ratones Endogámicos BALB C , Micelas , Nanopartículas/administración & dosificación , Polietilenglicoles/química , Ácido Poliglutámico/química , Polímeros/farmacocinética , Polímeros/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Ciclodextrinas/química
9.
Nano Lett ; 17(11): 6983-6990, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28977746

RESUMEN

Therapeutic nanoreactors have been proposed to treat cancers through in situ transformation of low-toxicity prodrugs into toxic therapeutics in the body. However, the in vivo applications are limited by low tissue-specificity and different tissue distributions between sequentially injected nanoreactors and prodrugs. Herein, we construct a block copolymer prodrug-based polymersome nanoreactor that can achieve novel orchestrated oxidation/chemotherapy of cancer via specific activation at tumor sites. The block copolymers composed of poly(ethylene glycol) (PEG) and copolymerized monomers of camptothecin (CPT) and piperidine-modified methacrylate [P(CPTMA-co-PEMA)] were optimized to self-assemble into polymersomes in aqueous solution for encapsulation of glucose oxidase (GOD) to obtain GOD-loaded polymersome nanoreactors (GOD@PCPT-NR). GOD@PCPT-NR maintained inactive in normal tissues upon systemic administration. After deposition in tumor tissues, tumor acidity-triggered protonation of PPEMA segments resulted in high permeability of the polymersome membranes and oxidation reaction of diffused glucose and O2 under the catalysis of GOD. The activation of the reaction generated H2O2, improving the oxidative stress in tumors. Simultaneously, a high level of H2O2 further activated PCPTMA prodrugs, releasing active CPT drugs. High tumor oxidative stress and released CPT drugs synergistically killed cancer cells and suppressed tumor growth via oxidation/chemotherapy. Our study provides a new strategy for engineering therapeutic nanoreactors in an orchestrated fashion for cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Glucosa Oxidasa/farmacología , Peróxido de Hidrógeno/metabolismo , Metacrilatos/farmacología , Polietilenglicoles/farmacología , Profármacos/farmacología , Células A549 , Antineoplásicos Fitogénicos/química , Camptotecina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Glucosa Oxidasa/química , Humanos , Concentración de Iones de Hidrógeno , Metacrilatos/química , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Polietilenglicoles/química , Profármacos/química
10.
Bioconjug Chem ; 28(8): 2190-2198, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28661654

RESUMEN

The amphiphilic block copolymer anticancer drug nanocarriers clinically used or in the progress of clinical trials frequently suffer from modest final therapeutic efficacy due to a lack of intelligent features. For example, the biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) has been approved for clinical applications as a paclitaxel (PTX) nanocarrier (Genexol-PM) due to the optimized pharmacokinetics and biodistribution; however, a lack of intelligent features limits the intracellular delivery in tumor tissue. To endow the mediocre polymer with smart properties via a safe and facile method, we introduced a matrix metalloproteinase (MMP)-responsive peptide GPLGVRGDG into the block copolymer via efficient click chemistry and ring-opening polymerization to prepare PEG-GPLGVRGDG-PDLLA (P1). P1 was further self-assembled into micellar nanoparticles (NPs) to load PTX, which show MMP-2-triggered dePEGylation due to cleavage of the peptide linkage. Moreover, the residual VRGDG sequences are retained on the surface of the NPs after dePEGylation, which can serve as ligands to facilitate the cellular uptake. The cytotoxicity of PTX loaded in P1 NPs against 4T1 cells is significantly enhanced as compared with free PTX or PTX-loaded PEG-GPLGVRG-PDLLA (P2) and PEG-PDLLA (P3) NPs. In vivo studies confirmed that PTX-loaded P1 NPs show prolonged blood circulation, which are similar to P2 and P3 NPs but exhibit more-efficient accumulation in the tumor site. Ultimately, PTX-loaded P1 NPs display statistically significant improvement of antitumor activity against tumor-bearing mice via systemic administration. Therefore, the strategy by facile incorporation of a responsive peptide linkage between PEG and PDLLA is a promising approach to improving the therapeutic efficacy of anticancer-drug-loaded amphiphilic block copolymer micelles.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Metaloproteinasas de la Matriz/metabolismo , Péptidos/química , Poliésteres/química , Polietilenglicoles/química , Secuencia de Aminoácidos , Animales , Antineoplásicos/metabolismo , Transporte Biológico , Línea Celular Tumoral , Portadores de Fármacos/farmacocinética , Humanos , Ratones , Distribución Tisular
11.
Angew Chem Int Ed Engl ; 56(45): 14025-14030, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28940903

RESUMEN

Polymeric nanoreactors (NRs) have distinct advantages to improve chemical reaction efficiency, but the in vivo applications are limited by lack of tissue-specificity. Herein, novel glucose oxidase (GOD)-loaded therapeutic vesicular NRs (theraNR) are constructed based on a diblock copolymer containing poly(ethylene glycol) (PEG) and copolymerized phenylboronic ester or piperidine-functionalized methacrylate (P(PBEM-co-PEM)). Upon systemic injection, theraNR are inactive in normal tissues. At a tumor site, theraNR are specifically activated by the tumor acidity via improved permeability of the membranes. Hydrogen peroxide (H2 O2 ) production by the catalysis of GOD in theraNR increases tumor oxidative stress significantly. Meanwhile, high levels of H2 O2 induce self-destruction of theraNR releasing quinone methide (QM) to deplete glutathione and suppress the antioxidant ability of cancer cells. Finally, theraNR efficiently kill cancer cells and ablate tumors via the synergistic effect.


Asunto(s)
Antineoplásicos/uso terapéutico , Muerte Celular/efectos de los fármacos , Portadores de Fármacos , Nanoestructuras , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Polietilenglicoles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Ácidos Borónicos/química , Permeabilidad de la Membrana Celular , Ésteres , Glucosa Oxidasa/metabolismo , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Indolquinonas/química , Metacrilatos/química , Microscopía Electrónica de Transmisión , Neoplasias/metabolismo , Piperidinas/química , Prueba de Estudio Conceptual
12.
Biomacromolecules ; 17(10): 3268-3276, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27564064

RESUMEN

Construction of efficient doxorubicin (DOX) delivery systems addressing a cascade of physiological barriers remains a great challenge for better therapeutic efficacy of tumors. Herein, we design well-defined enzyme-responsive peptide-linked block copolymer, PEG-GPLGVRGDG-P(BLA-co-Asp) [PEG and P(BLA-co-Asp) are poly(ethylene glycol) and partially hydrolyzed poly(ß-benzyl l-aspartate) (PBLA), respectively] (P3), with modular functionality for efficient delivery of DOX. The block copolymers were successfully obtained via click reaction to introduce peptide (alkynyl-GPLGVRGDG) into the end of PEG for initiating ring-opening polymerization of ß-benzyl l-aspartate N-carboxyanhydride (BLA-NCA) by terminal amino groups followed by partial hydrolysis of PBLA segments. P3 micelle was demonstrated to encapsulate DOX efficiently through synergistic effect of benzyl group-based hydrophobic and carboxyl moiety-based electrostatic interactions. Effective matrix metalloproteinase-2 (MMP-2)-triggered cleavage of peptide for dePEGylation of P3 micelles was confirmed and residual RGD ligands were retained on the surfaces. Against HT1080 cells overexpressing MMP-2, DOX-loaded P3 micelles showed approximately 4-fold increase of the cellular internalization amount as compared with free DOX and half maximal inhibitory concentration (IC50) value of DOX-loaded P3 micelles was determined to be 0.38 µg/mL compared with 0.66 µg/mL of free DOX due to MMP-triggered dePEGylation, RGD-mediated cellular uptake, and rapid drug release inside cells. Binding and penetration evaluation toward HT1080 multicellular tumor spheroids (MCTs) confirmed high affinity and deep penetration of P3 micelles in tumor tissues. This modular design of enzyme-responsive block copolymers represents an effective strategy to construct intelligent drug delivery vehicles for addressing a cascade of delivery barriers.


Asunto(s)
Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Péptidos/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/genética , Neoplasias/genética , Tamaño de la Partícula , Péptidos/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química
13.
Macromol Rapid Commun ; 36(20): 1841-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26274805

RESUMEN

Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Reacción de Cicloadición , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Rayos Infrarrojos , Micelas , Peso Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Polietilenglicoles/química , Polimerizacion , Ácidos Polimetacrílicos/química , Temperatura
14.
Biomacromolecules ; 15(8): 2914-23, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-24978294

RESUMEN

Adequate retention in blood circulation is a prerequisite for construction of gene delivery carriers for systemic applications. The stability of gene carriers in the bloodstream requires them to effectively resist protein adsorption and maintain small size in the bloodstream avoiding dissociation, aggregation, and nuclease digestion under salty and proteinous medium. Herein, a mixture of two block catiomers consisting of the same cationic block, poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PAsp(DET)), but varying shell-forming blocks, poly[2-(2-methoxyethoxy) ethyl methacrylate] (PMEO2MA), and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), was used to complex with plasmid DNA (pDNA) to fabricate polyplex micelles with mixed shells (MPMs) at 20 °C. The thermoresponsive property of PMEO2MA allows distinct phase transition from hydrophilic to hydrophobic by increasing incubation temperature from 20 to 37 °C, which results in a distinct heterogeneous corona containing hydrophilic and hydrophobic regions at the surface of the MPMs. Subsequent study verified that this transition promoted further condensation of pDNA, thereby giving rise to improved complex and colloidal stability. The proposed system has shown remarkable stability in salty and proteinous solution and superior tolerance to nuclease degradation. As compared with polyplex micelles formed from single POEGMA-b-PAsp(DET) block copolymer, in vivo circulation experiments in the bloodstream further confirmed that the retention time of MPMs was prolonged significantly. Moreover, the proposed system exhibited remarkably high cell transfection activity especially at low N/P ratios and negligible cytotoxicity and thus portends promising utility for systemic gene therapy applications.


Asunto(s)
ADN , Terapia Genética/métodos , Plásmidos , Polietilenglicoles , Ácidos Polimetacrílicos , Transfección/métodos , Animales , ADN/química , ADN/farmacología , Células HeLa , Humanos , Ratones , Plásmidos/química , Plásmidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología
15.
Macromol Rapid Commun ; 35(4): 466-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24282045

RESUMEN

Novel neutral-cationic brush block copolymer, poly[oligo(ethylene glycol) monomethyl ether methacrylate-co-folic acid methacrylate]-b-poly[2-(2-(2-(2-bromo-2-methylpropanoyloxy)-ethyl) disulfanyl) ethyl methacrylate-g-2-dimethylaminoethyl methacrylate], P(OEGMA-co-FAMA)-b-P(BSSMA-g-PDMAEMA), is synthesized via consecutive controlled radical polymerizations. Containing disulfide linkages bridging backbone and side chains in the cationic brush block and cancer cell-targeting ligands (folic acid) in the neutral hydrophilic block, the diblock copolymer is employed as a tumor-targeted redox-responsive degradable nonviral gene delivery vector. P(OEGMA-co-FAMA)-b-P(BSSMA-g-PDMAEMA) brush block copolymers can condense plasmid DNA (pDNA) efficiently via the formation of electrostatic polyplex micelles. Under reductive milieu, pDNA can be released due to the cleavage of disulfide linkages and accordingly pDNA-binding cationic PDMAEMA side chains. In addition, the brush block copolymer exhibits low cytotoxicity and the corresponding polyplex micelles show relatively high gene transfection efficiency.


Asunto(s)
Nanoestructuras/química , Polímeros/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Supervivencia Celular/efectos de los fármacos , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Metacrilatos/química , Micelas , Nylons/química , Oxidación-Reducción , Plásmidos/química , Plásmidos/metabolismo , Polímeros/síntesis química , Polímeros/toxicidad
16.
Chem Soc Rev ; 42(17): 7289-325, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23549663

RESUMEN

Self-assembled nanostructures of amphiphilic and double hydrophilic block copolymers have been increasingly utilized as potent polymeric nanocarriers of therapeutic drugs, genes, bioactive molecules, and imaging/contrast agents due to improved water solubility, bioavailability, and extended blood circulation duration. Though passive and active targeted drug delivery strategies have long been proposed to promote desirable drug accumulation specifically at the disease sites, the introduction of stimuli-responsiveness into self-assembled block copolymer nanocarriers can additionally lead to controlled/triggered release of therapeutic/imaging agents into target pathological tissues and cells, with concomitant advantages of enhanced delivery efficiency and therapeutic efficacy. Appropriately designed stimuli-responsive block copolymer assemblies can exhibit chemical structure transformation, microstructural rearrangement and inversion, or even disassembly into unimers or smaller ones under external stimuli such as pH, temperature, ion strength, redox potential, light, electric, and magnetic fields, and specific bioactive molecules and metabolites. Compared to normal tissues, pathological sites such as tumor tissues typically exhibit vascular abnormalities, weak acidity (~pH 6.8), abnormal temperatures, over-expressed proteins and enzymes, hypoxia, high levels of metabolites and reactive small molecule species, etc. Moreover, upon cellular uptake, drug-loaded polymeric nanocarriers will be subjected to intracellular pH gradients (pH 5.9-6.2 in early endosomes and pH 5.0-5.5 in late endosomes and lysosomes) and redox and H2O2 gradients within different cell organelles and the cytosol. Thus, block copolymer nanocarriers responsive to the above described bio-relevant stimuli or biochemical signals characteristic of pathologic tissues and cells will provide an alternative type of "active targeting" strategy, which can be utilized to further boost therapeutic efficacy and imaging sensitivity via disease site-specific delivery and controlled release. A variety of extracellular or intracellular stimuli innate to disease sites, such as mildly acidic pH, temperature, enzymes (matrix metalloproteinase, ß-glucuronidase, and phosphatase), oxidative/reductive microenvironments, and abnormal levels of bioactive molecules or metabolites, have been utilized for this purpose. In this review, we summarize recent advances in stimuli-responsive block copolymer assemblies which are responsive to tumor and intracellular microenvironments and their applications in anticancer drug delivery and enhanced imaging sensitivity.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Enzimas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Micelas , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Oxidación-Reducción
17.
J Am Chem Soc ; 135(46): 17617-29, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24160840

RESUMEN

Solution self-assembly of block copolymers (BCPs) typically generates spheres, rods, and vesicles. The reproducible bottom-up fabrication of stable planar nanostructures remains elusive due to their tendency to bend into closed bilayers. This morphological vacancy renders the study of shape effects on BCP nanocarrier-cell interactions incomplete. Furthermore, the fabrication of single BCP assemblies with built-in drug delivery functions and geometry-optimized performance remains a major challenge. We demonstrate that PEG-b-PCPTM polyprodrug amphiphiles, where PEG is poly(ethylene glycol) and PCPTM is polymerized block of reduction-cleavable camptothecin (CPT) prodrug monomer, with >50 wt % CPT loading content can self-assemble into four types of uniform nanostructures including spheres, large compound vesicles, smooth disks, and unprecedented staggered lamellae with spiked periphery. Staggered lamellae outperform the other three nanostructure types, exhibiting extended blood circulation duration, the fastest cellular uptake, and unique internalization pathways. We also explore shape-modulated CPT release kinetics, nanostructure degradation, and in vitro cytotoxicities. The controlled hierarchical organization of polyprodrug amphiphiles and shape-tunable biological performance opens up new horizons for exploring next-generation BCP-based drug delivery systems with improved efficacy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos/farmacología , Camptotecina/farmacología , Sistemas de Liberación de Medicamentos , Polímeros/farmacología , Profármacos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Camptotecina/administración & dosificación , Camptotecina/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Cinética , Estructura Molecular , Nanoestructuras/química , Tamaño de la Partícula , Polímeros/administración & dosificación , Polímeros/química , Profármacos/administración & dosificación , Profármacos/química , Relación Estructura-Actividad , Propiedades de Superficie
18.
Macromol Rapid Commun ; 34(11): 922-30, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23526715

RESUMEN

Metallo-supramolecular core cross-linked (CCL) micelles are fabricated from terpyridine-functionalized double hydrophilic block copolymers, poly(2-(2-methoxyethoxy)ethyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate-co-4'-(6-methacryloxyhexyloxy)-2,2':6',2″-terpyridine) [PMEO2 MA-b-P(DEA-co-TPHMA)] via the formation of bis(terpyridine)ruthenium(II) complexes. These metallo-supramolecular CCL micelles exhibit not only high structural integrity under different pH values and temperatures in aqueous solution, but multistimuli responsiveness including pH-responsive cores, thermo-responsive shells, and reversible dissociation of bis(terpyridine)ruthenium(II) complexes upon addition of competitive metal ion chelator, which allows for precisely controlled release of the encapsulated hydrophobic guest molecules via the combination of different stimuli.


Asunto(s)
Polímeros/síntesis química , Compuestos de Rutenio/síntesis química , Rutenio/química , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Polimerizacion , Polímeros/química , Compuestos de Rutenio/química , Temperatura
19.
ACS Nano ; 17(10): 9374-9387, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37141569

RESUMEN

Stimulator of interferon genes (STING) activation by STING agonists has been recognized as one of the potent and promising immunotherapy strategies. However, the immunosuppressive tumor microenvironment always hinders the therapeutic efficacy of cancer immunotherapy. In this report, we present polymeric metal-organic framework (PMOF) nanoparticles (NPs) for the combination of photodynamic therapy (PDT) and enhanced STING activation to improve the immunotherapeutic efficacy. The PMOF NPs with poly(ethylene glycol) (PEG) shells were obtained via coordination between the block copolymer ligand PEG-b-PABDA consisting of 1,4-bezenedicarboxylic acid-bearing polyacrylamide (PABDA), meso-tetra(carboxyphenyl)porphyrin (TCPP), thioketal diacetic acid, and zirconyl chloride. Subsequently, the STING agonist SR-717 was loaded into the porous structure of PMOF to obtain SR@PMOF NPs which show excellent stability under the physiological conditions. After intravenous injection and tumor accumulation, light irradiation on the tumor sites results in efficient singlet oxygen (1O2) production from TCPP and cellular apoptosis to release fragmented DNA and tumor-associated antigens. Simultaneously, thioketal bonds can be broken by 1O2 to destroy the PMOF structure and rapidly release SR717. SR-717 and PDT synergistically enhance the antitumor immunity via combination photodynamic-immunotherapy due to reversal of the immunosuppressive tumor microenvironment and enhanced endogenous STING activation, which can suppress the growth of the primary and distant tumors efficiently. The oxidation-responsive SR@PMOF NPs represent a promising delivery system of STING agonists and efficient PDT NPs for simultaneous suppression of the primary and metastatic tumors via the rational combination of PDT and enhanced STING activation.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Neoplasias/terapia , Nanopartículas/química , Polímeros , Inmunoterapia , Microambiente Tumoral
20.
ACS Macro Lett ; 11(4): 543-548, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35575322

RESUMEN

Nanofibers self-assembled from peptides have attracted much attention to inhibit cancer cells. However, there are still some disadvantages, including high concentration for self-assembly and incapability to load drugs, which limit their applications. In this report, we rationally integrate self-assembled peptides, glutathione-sensitive disulfide bonds, and mitochondrial targeting moieties into the amphiphilic block copolymer to construct the nanocarriers, which can be used to load anticancer drug doxorubicin (DOX). After cellular internalization, the nanocarriers can reassemble from micelles to nanofibers under the trigger by glutathione and locate in mitochondria. The released DOX and nanofibers induce mitochondrial dysfunction and activate the apoptosis pathway to synergistically inhibit tumor cells. This organelle-specific drug delivery system with reassembly capability from micelles to nanofibers shows great potential for effectively killing cancer cells.


Asunto(s)
Micelas , Nanofibras , Doxorrubicina/farmacología , Glutatión/farmacología , Mitocondrias , Péptidos , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA