Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genet Med ; 18(1): 49-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25790162

RESUMEN

PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Disostosis Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Disostosis Mandibulofacial/diagnóstico , Microcefalia/genética , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Eliminación de Secuencia , Adulto Joven
2.
J Med Genet ; 52(10): 681-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246519

RESUMEN

BACKGROUND: Charcot-Marie-Tooth (CMT) disease, the most frequent form of inherited neuropathy, is a genetically heterogeneous group of disorders of the peripheral nervous system, but with a quite homogeneous clinical phenotype (progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss and usually decreased tendon reflexes). Our aim was to review the various CMT subtypes identified at the present time. METHODS: We have analysed the medical literature and performed a historical retrospective of the main steps from the individualisation of the disease (at the end of the nineteenth century) to the recent knowledge about CMT. RESULTS: To date, >60 genes (expressed in Schwann cells and neurons) have been implicated in CMT and related syndromes. The recent advances in molecular genetic techniques (such as next-generation sequencing) are promising in CMT, but it is still useful to recognise some specific clinical or pathological signs that enable us to validate genetic results. In this review, we discuss the diagnostic approaches and the underlying molecular pathogenesis. CONCLUSIONS: We suggest a modification of the current classification and explain why such a change is needed.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Expresión Génica , Enfermedad de Charcot-Marie-Tooth/clasificación , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Pruebas Genéticas , Humanos , Neuronas/metabolismo , Estudios Retrospectivos , Células de Schwann/metabolismo
3.
J Med Genet ; 50(3): 194-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23355746

RESUMEN

BACKGROUND: Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterised by abnormal central nervous system white matter. Mutations in POLR3A and POLR3B genes were recently reported to cause four clinically overlapping hypomyelinating leukodystrophy phenotypes. Our aim was to investigate the presence and frequency of POLR3A and POLR3B mutations in patients with genetically unexplained hypomyelinating leukodystrophies with typical clinical and/or radiologic features of Pol III-related leukodystrophies. METHODS: The entire coding region and the flanking exon/intron boundaries of POLR3A and/or POLR3B genes were amplified and sequenced in 14 patients. RESULTS: Recessive mutations in POLR3A or POLR3B were uncovered in all 14 patients. Eight novel mutations were identified in POLR3A: six missenses, one nonsense, and one frameshift mutation. Seven patients carried compound heterozygous mutations in POLR3B, of whom six shared the common mutation in exon 15 (p.V523E). Seven novel mutations were identified in POLR3B: four missenses, two splice sites, and one intronic mutation. CONCLUSIONS: To date, our group has described 37 patients, of whom 27 have mutations in POLR3A and 10 in POLR3B, respectively. Altogether, our results further support the proposal that POLR3A and POLR3B mutations are a major cause of hypomyelinating leukodystrophies and suggest that POLR3A mutations are more frequent.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Hipogonadismo/genética , Mutación , ARN Polimerasa III/genética , Anomalías Dentarias/genética , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Humanos , Datos de Secuencia Molecular
4.
J Peripher Nerv Syst ; 18(2): 181-4, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23781966

RESUMEN

We report a severe phenotype of Charcot-Marie-Tooth (CMT) disease type 1E caused by a novel p.Phe84Leufs*24 PMP22 point mutation. Ultrastructural examination of a nerve biopsy showed non- or partly myelinated axons which were surrounded by "onion bulb" formations mainly composed of concentric basement membranes and characterized by the presence of prominent concentric or longitudinal collagen fibrils interspersed with basement membranes. PMP22 point mutations are rare and responsible for polyneuropathies often demyelinating with onion bulb formations composed of concentric and redundant basement membranes. Entrapment of prominent collagen fibrils within onion bulb formations is unusual, even in the large spectrum of CMT disease with long duration and severe damage.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de la Mielina/genética , Mutación Puntual , Adulto , Enfermedad de Charcot-Marie-Tooth/patología , Humanos , Masculino , Microscopía Electrónica de Transmisión , Nervio Sural/ultraestructura
5.
Hum Mol Genet ; 19(8): 1399-412, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20080938

RESUMEN

Myotonic dystrophy type 1 (DM1) is one of the most variable inherited human disorders. It is characterized by the involvement of multiple tissues and is caused by the expansion of a highly unstable CTG repeat. Variation in disease severity is partially accounted for by the number of CTG repeats inherited. However, the basis of the variable tissue-specific symptoms is unknown. We have determined that an unusual Dutch family co-segregating DM1, Charcot-Marie-Tooth neuropathy, encephalopathic attacks and early hearing loss, carries a complex variant repeat at the DM1 locus. The mutation comprises an expanded CTG tract at the 5'-end and a complex array of CTG repeats interspersed with multiple GGC and CCG repeats at the 3'-end. The complex variant repeat tract at the 3'-end of the array is relatively stable in both blood DNA and the maternal germ line, although the 5'-CTG tract remains genetically unstable and prone to expansion. Surprisingly though, even the pure 5'-CTG tract is more stable in blood DNA and the maternal germ line than archetypal DM1 alleles of a similar size. Complex variant repeats were also identified at the 3'-end of the CTG array of approximately 3-4% of unrelated DM1 patients. The observed polarity and the stabilizing effect of the variant repeats implicate a cis-acting modifier of mutational dynamics in the 3'-flanking DNA. The presence of such variant repeats very likely contributes toward the unusual symptoms in the Dutch family and additional symptomatic variation in DM1 via affects on both RNA toxicity and somatic instability.


Asunto(s)
Mutación , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Alelos , Femenino , Humanos , Masculino , Linaje
7.
J Pers Med ; 12(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35207700

RESUMEN

Next-generation sequencing (NGS) allows the detection of plentiful mutations increasing the rate of patients getting a positive diagnosis. However, while single-nucleotide variants (SNVs) or small indels can be easily detected, structural variations (SVs) such as copy number variants (CNVs) are often not researched. In Charcot-Marie-Tooth disease (CMT), the most common hereditary peripheral neuropathy, the PMP22-duplication was the first variation detected. Since then, more than 90 other genes have been associated with CMT, with point mutations or small indels mostly described. Herein, we present a personalized approach we performed to obtain a positive diagnosis of a patient suffering from demyelinating CMT. His NGS data were aligned to the human reference sequence but also studied using the CovCopCan software, designed to detect large CNVs. This approach allowed the detection of only one mutation in SH3TC2, the frequent p.Arg954*, while SH3TC2 is known to be responsible for autosomal recessive demyelinating CMT forms. Interestingly, by modifying the standard CovCopCan use, we detected the second mutation of this patient corresponding to a 922 bp deletion in SH3TC2 (Chr5:148,390,609-Chr5:148,389,687), including only one exon (exon 14). This highlights that SVs, different from PMP22 duplication, can be responsible for peripheral neuropathy and should be searched systematically. This approach could also be employed to improve the diagnosis of all inherited diseases.

8.
Front Cell Dev Biol ; 10: 1019715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568968

RESUMEN

Synapsin-I (SYN1) is a presynaptic phosphoprotein crucial for synaptogenesis and synaptic plasticity. Pathogenic SYN1 variants are associated with variable X-linked neurodevelopmental disorders mainly affecting males. In this study, we expand on the clinical and molecular spectrum of the SYN1-related neurodevelopmental disorders by describing 31 novel individuals harboring 22 different SYN1 variants. We analyzed newly identified as well as previously reported individuals in order to define the frequency of key features associated with these disorders. Specifically, behavioral disturbances such as autism spectrum disorder or attention deficit hyperactivity disorder are observed in 91% of the individuals, epilepsy in 82%, intellectual disability in 77%, and developmental delay in 70%. Seizure types mainly include tonic-clonic or focal seizures with impaired awareness. The presence of reflex seizures is one of the most representative clinical manifestations related to SYN1. In more than half of the cases, seizures are triggered by contact with water, but other triggers are also frequently reported, including rubbing with a towel, fever, toothbrushing, fingernail clipping, falling asleep, and watching others showering or bathing. We additionally describe hyperpnea, emotion, lighting, using a stroboscope, digestive troubles, and defecation as possible triggers in individuals with SYN1 variants. The molecular spectrum of SYN1 variants is broad and encompasses truncating variants (frameshift, nonsense, splicing and start-loss variants) as well as non-truncating variants (missense substitutions and in-frame duplications). Genotype-phenotype correlation revealed that epileptic phenotypes are enriched in individuals with truncating variants. Furthermore, we could show for the first time that individuals with early seizures onset tend to present with severe-to-profound intellectual disability, hence highlighting the existence of an association between early seizure onset and more severe impairment of cognitive functions. Altogether, we present a detailed clinical description of the largest series of individuals with SYN1 variants reported so far and provide the first genotype-phenotype correlations for this gene. A timely molecular diagnosis and genetic counseling are cardinal for appropriate patient management and treatment.

9.
Exp Neurol ; 323: 113069, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655048

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a common inherited peripheral neuropathy. The CMT2K axonal form is associated with GDAP1 dominant mutations, which according to the affected domain cause a gradient of severity. Indeed, the p.C240Y mutation, located within GDAP1 glutathione S-transferase (GST) domain and associated to a mitochondrial complex I defect, is related to a faster disease progression, compared to other mutations, such as the p.R120W located outside the GST domain. Here, we analysed the pathophysiology of six CMT2K fibroblast cell lines, carrying either the p.C240Y or p.R120W mutations. We show that complex I deficiency leads to a redox potential alteration and a significant reduction of sirtuin 1 (SIRT1) expression, a major deacetylase sensitive to the cellular redox state, and NRF1 the downstream target of SIRT1. In addition, we disclosed that the p.C240Y mutation is associated with a greater mitochondrial oxidative stress than the p.R120W mutation. Moreover, complex I activity is further restored in CMT2K mutant cell lines exposed to resveratrol. Together, these results suggest that the reduction of oxidative stress may constitute a promising therapeutic strategy for CMT2K.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Fibroblastos/metabolismo , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Línea Celular , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mutación , Resveratrol/farmacología
10.
Eur J Hum Genet ; 27(9): 1406-1418, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30996334

RESUMEN

Currently only 25-30% of patients with axonal forms of Charcot-Marie-Tooth disease (CMT) receive a genetic diagnosis. We aimed to identify the causative gene of CMT type 2 in 8 non-related French families with a distinct clinical phenotype. We collected clinical, electrophysiological, and laboratory findings and performed genetic analyses in four different French laboratories. Seventy-two patients with autosomal dominant inheritance were identified. The disease usually started in the fourth decade and the clinical picture was dominated by sensory ataxia (80%), neuropathic pain (38%), and length-dependent sensory loss to all modalities. Electrophysiological studies showed a primarily axonal neuropathy, with possible isolated sensory involvement in milder phenotypes. Disease severity varied greatly but the clinical course was generally mild. We identified 2 novel variants in LRSAM1 gene: a deletion of 4 amino acids, p.(Gln698_Gln701del), was found in 7 families and a duplication of a neighboring region of 10 amino acids, p.(Pro702_Gln711dup), in the remaining family. A common haplotype of ~450 kb suggesting a founder effect was noted around LRSAM1 in 4 families carrying the first variant. LRSAM1 gene encodes for an E3 ubiquitin ligase important for neural functioning. Our results confirm the localization of variants in its catalytic C-terminal RING domain and broaden the phenotypic spectrum of LRSAM1-related neuropathies, including painful and predominantly sensory ataxic forms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Familia , Efecto Fundador , Variación Genética , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Secuencia de Aminoácidos , Biopsia , Proteínas de Ciclo Celular/genética , Francia , Pruebas Genéticas , Humanos , Proteínas Nucleares/genética , Linaje , Ubiquitina-Proteína Ligasas/química
11.
Mol Genet Genomic Med ; 7(9): e839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31393079

RESUMEN

BACKGROUND: The most common inherited peripheral neuropathy is Charcot-Marie-Tooth disease (CMT), with a prevalence of 1/2500. Other symptoms can be associated to the condition, such as hearing loss. Currently, no global hearing impairment assessment has been determined, and the physiopathology is not well known. METHODS: The aim of the study was to analyze among a French series of 3,412 patients with inherited peripheral neuropathy (IPN), the ones who also suffer from hearing loss, to establish phenotype-genotype correlations. An NGS strategy for IPN one side and nonsyndromic hearing loss (NSHL) on the other side, were performed. RESULTS: Hearing loss (HL) was present in only 44 patients (1.30%). The clinical data of 27 patients were usable. Demyelinating neuropathy was diagnosed in 15 cases and axonal neuropathy in 12 cases. HL varied from mild to profound. Five cases of auditory neuropathy were noticed. Diagnosis was made for 60% of these patients. Seven novel pathogenic variants were discovered in five different genes: PRPS1; MPZ; SH3TC2; NEFL; and ABHD12. Two patients with PMP22 variant, had also an additional variant in COCH and MYH14 respectively. No pathogenic variant was found at the DFNB1 locus. Genotype-phenotype correlations do exist, especially with SH3TC2, PRPS1, ABHD12, NEFL, and TRPV4. CONCLUSION: Involvement of PMP22 is not enough to explain hearing loss in patients suffering from IPN. HL can be due to cochlear impairment and/or auditory nerve dysfunction. HL is certainly underdiagnosed, and should be evaluated in every patient suffering from IPN.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Alelos , Biología Computacional , Femenino , Francia/epidemiología , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Genotipo , Pérdida Auditiva/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Patrón de Herencia , Masculino , Persona de Mediana Edad , Mutación , Linaje , Enfermedades del Sistema Nervioso Periférico/epidemiología , Fenotipo
12.
Neurol Genet ; 5(6): e369, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32042905

RESUMEN

OBJECTIVE: To determine the clinical, radiologic, and molecular characteristics of RNA polymerase III-related leukodystrophy (POLR3-HLD) caused by biallelic POLR1C pathogenic variants. METHODS: A cross-sectional observational study involving 25 centers worldwide was conducted. Clinical and molecular information was collected on 23 unreported and previously reported patients with POLR3-HLD and biallelic pathogenic variants in POLR1C. Brain MRI studies were reviewed. RESULTS: Fourteen female and 9 male patients aged 7 days to 23 years were included in the study. Most participants presented early in life (birth to 6 years), and motor deterioration was seen during childhood. A notable proportion of patients required a wheelchair before adolescence, suggesting a more severe phenotype than previously described in POLR3-HLD. Dental, ocular, and endocrine features were not invariably present (70%, 50%, and 50%, respectively). Five patients (22%) had a combination of hypomyelinating leukodystrophy and abnormal craniofacial development, including 1 individual with clear Treacher Collins syndrome (TCS) features. Brain MRI revealed hypomyelination in all cases, often with areas of pronounced T2 hyperintensity corresponding to T1 hypointensity of the white matter. Twenty-nine different pathogenic variants (including 12 new disease-causing variants) in POLR1C were identified. CONCLUSIONS: This study provides a comprehensive description of POLR3-HLD caused by biallelic POLR1C pathogenic variants based on the largest cohort of patients to date. These results suggest distinct characteristics of POLR1C-related disorder, with a spectrum of clinical involvement characterized by hypomyelinating leukodystrophy with or without abnormal craniofacial development reminiscent of TCS.

13.
Neurology ; 90(10): e870-e876, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29429969

RESUMEN

OBJECTIVE: The continual discovery of disease-causing gene mutations has led to difficulties in the complex classification of Charcot-Marie-Tooth diseases (CMT) that needs to be revised. METHODS: We recently published a proposal to update the classification of inherited neuropathies. The reactions from colleagues prompted us to diffuse the proposal and ask people if they would be ready for such a change. We therefore performed an internet survey (from October 1, 2016, to December 1, 2016) that included more than 300 CMT worldwide specialists (practitioners and scientists) from various countries. A questionnaire (with proposals to update and simplify the way in which CMT is classified) was sent by e-mail to all participants in the last International Charcot-Marie-Tooth and Related Neuropathy Consortium meeting held in Venice, September 8-10, 2016 (as identified through an e-mail list). RESULTS: Of the 107 CMT specialists who answered the survey, 65% considered that changes are needed and that our proposals constituted an improvement over the historical classification of CMT. CONCLUSIONS: Based on recent proposals in the medical literature, these results highlight that most specialists think that changes are needed to the classification of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/clasificación , Enfermedad de Charcot-Marie-Tooth/genética , Cooperación Internacional , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Charcot-Marie-Tooth/epidemiología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
14.
FEBS J ; 283(3): 498-509, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607765

RESUMEN

Papillon-Lefèvre syndrome (PLS) (OMIM: 245000) is a rare disease characterized by severe periodontitis and palmoplantar keratoderma. It is caused by mutations in both alleles of the cathepsin C (CatC) gene CTSC that completely abrogate the proteolytic activity of this cysteine proteinase. Most often, a genetic analysis to enable early and rapid diagnosis of PLS is unaffordable or unavailable. In this study, we tested the hypothesis that active CatC is constitutively excreted and can be easily traced in the urine of normal subjects. If this is true, determining its absence in the urine of patients would be an early, simple, reliable, low-cost and easy diagnostic technique. All 75 urine samples from healthy control subjects (aged 3 months to 80 years) contained proteolytically active CatC and its proform, as revealed by kinetic analysis and immunochemical detection. Of the urine samples of 31 patients with a PLS phenotype, 29 contained neither proteolytically active CatC nor the CatC antigen, so that the PLS diagnosis was confirmed. CatC was detected in the urine of the other two patients, and genetic analysis revealed no loss-of-function mutation in CTSC, indicating that they suffer from a PLS-like condition but not from PLS. Screening for the absence of urinary CatC activity soon after birth and early treatment before the onset of PLS manifestations will help to prevent aggressive periodontitis and loss of many teeth, and should considerably improve the quality of life of PLS patients.


Asunto(s)
Catepsina C/orina , Enfermedad de Papillon-Lefevre/diagnóstico , Enfermedad de Papillon-Lefevre/orina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Catepsina C/genética , Catepsina C/metabolismo , Niño , Preescolar , Femenino , Voluntarios Sanos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
15.
Eur J Med Genet ; 55(2): 151-5, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22274139

RESUMEN

We report a 19 year-old patient carrying a terminal 20p microdeletion. She displayed clinical features resembling those of two other previously described patients. We suggest that a specific phenotype can be associated with this chromosomal anomaly. Mental retardation, epilepsy, and dysmorphic signs including low-set ears and overfolded helices seem highly characteristic of this syndrome and may define major diagnostic criteria of a recognizable phenotype. Delayed closure of fontanella, delayed permanent teeth eruption, visual disturbances, prominent ear lobes, prominent nasal root and ridge, thin upper lip and brachydactyly may represent inconstant minor criteria.


Asunto(s)
Proteínas de Unión al Calcio/genética , Deleción Cromosómica , Cromosomas Humanos Par 20/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Anomalías Múltiples/genética , Adolescente , Femenino , Humanos , Proteína Jagged-1 , Fenotipo , Proteínas Serrate-Jagged
16.
Neuromuscul Disord ; 22(8): 735-41, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22546700

RESUMEN

Either dominantly inherited mutations in MFN2 encoding mitofusin 2 or GDAP1 encoding ganglioside-induced differentiation associated protein 1 may be associated with mild neuropathy. The proband, a 41-year-old woman, and her daughter present a severe axonal form of Charcot-Marie-Tooth (CMT) disease. Both are heterozygous for the well-described mild variant p.R120W in GDAP1, which was transmitted by the pauci symptomatic proband's mother. Given that they had an early onset in the first decade and delayed walking acquisition, the other genes implicated in axonal forms of CMT disease were analyzed. A second mutation truncating MFN2 (p.Val160fsX26) was found in the proband and her daughter. This mutation was transmitted by the proband's father who has normal neurological examination. The proband underwent two nerve biopsies which showed an axonal degeneration, myelin modifications, and intra-axonal mitochondria with distorted cristae. Such abnormal mitochondria have been reported in cases with autosomal dominant MFN2 mutations and in one patient with an autosomal recessive GDAP1 mutation. Our two cases show that heterozygous truncation of MFN2, which is silent at least until the sixth decade, when combined with the mild p.R120W GDAP1 variant, leads to a severe neuropathy. This supports the emerging hypothesis of cumulative effects of MFN2 and GDAP1 mutation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etnología , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , Heterocigoto , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Adulto , Anciano , Biopsia , Enfermedad de Charcot-Marie-Tooth/patología , Preescolar , Femenino , Francia , Humanos , Masculino , Persona de Mediana Edad , Nervio Peroneo/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA