Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 23(1): 20-33, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34870412

RESUMEN

Although doxorubicin (DOX) is one of the most used chemotherapeutic drugs due to its efficacy against a wide group of cancer types, it presents severe side effects. As such, intensive research is being carried out to find new nanoscale systems that can help to overcome this problem. Polyester dendrimers based on the monomer 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are very promising systems for biomedical applications due to their biodegradability properties. In this study, bis-MPA-based dendrimers were, for the first time, evaluated as DOX delivery vehicles. Generations 4 and 5 of bis-MPA-based dendrimers with hydroxyl groups at the surface were used (B-G4-OH and B-G5-OH), together with dendrimers partially functionalized with amine groups (B-G4-NH2/OH and B-G5-NH2/OH). Partial functionalization was chosen because the main purpose was to compare the effect of different functional groups on dendrimers' drug delivery behavior without compromising cell viability, which is often affected by dendrimers' cationic charge. Results revealed that bis-MPA-based dendrimers were cytocompatible, independently of the chemical groups that were present at their surface. The B-G4-NH2/OH and B-G5-NH2/OH dendrimers were able to retain a higher number of DOX molecules, but the in vitro release of the drug was faster. On the contrary, the hydroxyl-terminated dendrimers exhibited a lower loading capacity but were able to deliver the drug in a more sustained manner. These results were in accordance with the cytotoxicity studies performed in several models of cancer cell lines and human mesenchymal stem cells. Overall, the results confirmed that it is possible to tune the drug delivery properties of bis-MPA-based dendrimers by modifying surface functionalization. Moreover, molecular modeling studies provided insights into the nature of the interactions established between the drug and the bis-MPA-based dendrimers─DOX molecules attach to their surface rather than being physically encapsulated.


Asunto(s)
Dendrímeros , Cationes/química , Supervivencia Celular , Dendrímeros/química , Dendrímeros/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Poliésteres/química
2.
Biomacromolecules ; 15(2): 492-9, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24432789

RESUMEN

Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.


Asunto(s)
Antineoplásicos/farmacología , Dendrímeros/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Fluorescencia , Polietilenglicoles/química , Polietileneimina/química , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Células 3T3 NIH , Nanogeles , Relación Estructura-Actividad
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1414-8, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18595772

RESUMEN

The present paper proposes a method for molecular spectrophotometric determination of copper in sugar cane spirits. The copper(I) reacts with biquinoline forming a pink complex with maximum absorption at 545 nm. The reaction occurs in the presence of hydroxylamine, ethanol and Triton X-100 tensioative. Determination of copper is possible in a linear range 0.2-20.0 mgL(-1) with a detection limit 0.05 mgL(-1). The great advantages of the proposed methodology are the elimination of liquid-liquid extraction step and the use of toxic organics solvents, like dioxane, to dissolve the reagent.


Asunto(s)
Cobre/química , Detergentes/farmacología , Etanol/farmacología , Octoxinol/farmacología , Quinolinas/química , Saccharum/metabolismo , Espectrofotometría Ultravioleta/métodos , Espectrofotometría/métodos , Alcoholes/química , Dioxanos/química , Etanol/análisis , Etanol/química , Concentración de Iones de Hidrógeno , Hidroxilamina/química , Modelos Químicos , Compuestos Orgánicos/química , Solventes/química
4.
Mater Sci Eng C Mater Biol Appl ; 60: 348-356, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26706540

RESUMEN

Despite the wide research done in the field, the development of advanced drug delivery systems with improved drug delivery properties and effective anticancer capability still remains a great challenge. Based on previous work that showed the potentialities of the nanoclay Laponite as a pH-sensitive doxorubicin (Dox) delivery vehicle, herein we report a simple method to modulate its extent of drug release at different pH values. This was achieved by alternate deposition of cationic poly(allylamine) hydrochloride and anionic poly(sodium styrene sulfonate) (PAH/PSS) polyelectrolytes over the surface of Dox-loaded Laponite nanoparticles using the electrostatic layer-by-layer (LbL) self-assembly approach. The successful formation of polyelectrolyte multilayer-coated Dox/Laponite systems was confirmed by Dynamic Light Scattering and zeta potential measurements. Systematic studies were performed to evaluate their drug release profiles and anticancer efficiency. Our results showed that the presence of the polyelectrolyte multilayers improved the sustained release properties of Laponite and allowed a fine tuning of the extension of drug release at neutral and acidic pH values. The cytotoxicity presented by polyelectrolyte multilayer-coated Dox/Laponite systems towards MCF-7 cells was in accordance with the drug delivery profiles. Furthermore, cellular uptake studies revealed that polyelectrolyte multilayer-coated Dox/Laponite nanoparticles can be effectively internalized by cells conducting to Dox accumulation in cell nucleus.


Asunto(s)
Doxorrubicina/química , Nanopartículas/química , Polímeros/química , Silicatos/química , Núcleo Celular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Nanopartículas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA