Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 196: 111282, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32763792

RESUMEN

Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg ß-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.


Asunto(s)
Fosfoproteínas , Polímeros , Bismuto , Hierro , Temperatura , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA