RESUMEN
A new method has been developed to enhance the antibacterial efficiency of traditional antibiotics. Chloramphenicol-imprinted polymer particles were decorated with boronic acid to improve their binding to both Gram-negative and -positive bacteria. The polymer particles have a high antibiotic loading and provide a slow release of the antibiotic payload to deactivate the target bacteria. The boronic acid modified polymer particles not only contribute to enhanced antibacterial efficiency, but also have the potential to act as scavengers to remove unused antibiotic from the environment.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ácidos Borónicos/química , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiologíaRESUMEN
Molecularly imprinted polymers (MIPs) have now become one of the most remarkable materials in the field of molecular recognition. Although many efforts have been made to study the process and mechanism of molecular imprinting, it has not been possible to monitor the interactions between the template and the growing polymer chains under real-time experimental conditions. The behavior of the template-monomer complex during the whole polymerization process has remained largely unknown. In this work, we introduce a fluorescence technique that allows monitoring of the template-functional monomer complex during an actual imprinting process, as well as the real-time signaling of template binding and dissociation from the imprinted polymer. For the first proof-of-principle, we select Alizarin Red S (ARS) and 4-vinylphenylboronic acid as the template and functional monomer, respectively, to synthesize MIP particles via precipitation polymerization. As the formation of the template-functional monomer complex leads to strong fluorescence emission, it allows the status of the template binding to be monitored throughout the whole reaction process in real time. Using the same fluorescence technique, the kinetics of template binding and dissociation can be studied directly without particle separation. The hydrophilic MIP particles can be used as a scavenger to remove ARS from water. In addition, the MIP particles can be used as a recyclable sensor to detect Cu ions. As the Cu ion forms a stable complex with ARS, it causes ARS to dissociate from the MIP nanoparticles, leading to effective fluorescence quenching. The non-separation analytical method based on fluorescence measurement provides a convenient means to study molecular imprinting reactions and the kinetics of molecular recognition using imprinted polymers. The recyclable nanoparticle sensor allows toxic Cu ions to be detected directly in water in the range of 0.1-100 µM with a recovery of 84-95%.
Asunto(s)
Impresión Molecular , Nanopartículas , Ácidos Borónicos , Cobre , Iones , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Nanopartículas/química , Polímeros/química , AguaRESUMEN
After the emergence of multidrug-resistant strains, antibiotic resistance in bacteria has become an important problem. Thus, materials for combating multidrug-resistant bacteria are of vital importance. In this work, we developed an antibacterial material that can selectively capture and destruct bacteria on the basis of their physical characteristics. To achieve bacterial capture and deactivation with a single material, we used bacterial cells as templates to synthesize surface-imprinted polymer beads in bacteria-stabilized Pickering emulsions. Acrylate-functionalized polyethylenimine was used to coat the bacterial surface so that the coated bacteria can act as a particle stabilizer to establish an oil-in-water Pickering emulsion. Hydrophobic Ag nanoparticles were introduced into the oil phase composed of cross-linking monomers. Bacteria-imprinted beads (BIB) were obtained after the oil phase was polymerized. Bacterial binding experiments confirmed the importance of the imprinted sites for specific recognition with the target bacteria. The Ag nanoparticles embedded inside the polymer beads enhanced bacterial inactivation and reduced the leakage of heavy metal in aquatic environment. The combination of bacteria-imprinting with delivery of general-purpose antibacterial reagents offers a useful approach toward selective capture and destruction of bacteria.
Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Nanopartículas del Metal/química , Polímeros/farmacología , Plata/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Escherichia coli/efectos de los fármacos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/química , Plata/química , Staphylococcus epidermidis/efectos de los fármacosRESUMEN
Molecularly imprinted polymers have been studied for a long time and have found useful applications in many fields. In most cases, small organic molecules are used as templates to synthesize imprinted polymers. In contrast to low molecular weight targets, large biological molecules and cells are more challenging to use as templates to synthesize cell-recognizing materials. This chapter presents an interfacial imprinting method to synthesize bacteria-recognizing polymer beads using Pickering emulsion polymerization. The tendency of bacteria to reside between two immiscible liquids is utilized to create surface-imprinted binding sites on cross-linked polymer microspheres.
Asunto(s)
Bacterias , Emulsiones , Impresión Molecular , Polimerizacion , PolímerosRESUMEN
A new photoconjugation approach was developed to prepare nanoparticle-supported boronic acid polymer for effective separation and enrichment of bacteria. The photo-activated polymer immobilization was demonstrated by coupling an azide-modified copolymer of N-isopropylacrylamide and glycidyl methacrylate to a perfluorophenyl azide-modified silica surface. The thermoresponsive polymer was synthesized using reversible addition fragmentation chain transfer polymerization followed by conversion of the pendant epoxides into azide groups. The perfluorophenyl azide-modified silica nanoparticles were synthesized by an amidation reaction between amino-functionalized silica and pentafluorobenzoyl chloride, and a subsequent treatment with sodium azide. Bacteria-capturing boronic acid was conjugated to the silica-supported polymer chains via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The particle size, morphology and organic content of the composite nanoparticles were characterized systematically. The capability of the nanocomposite to bind Gram-positive and Gram-negative bacteria was investigated. The nanocomposite exhibited high binding capacities for E. coli (13.4â¯×â¯107 CFU/mg) and S. epidermidis (7.66â¯×â¯107 CFU/mg) in phosphate buffered saline. The new photoconjugation strategy enables fast and straightforward grafting of functional polymers on surface, which opens many new opportunities for designing functional materials for bioseparation and biosensing.
Asunto(s)
Nanopartículas , Polímeros , Antibacterianos , Bacterias , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Concentración de Iones de Hidrógeno , Dióxido de Silicio , TemperaturaRESUMEN
Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg ß-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.