Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(41): 17543-17556, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32960592

RESUMEN

Osteoporosis is a global chronic disease characterized by severe bone loss and high susceptibility to fragile fracture. It is widely accepted that the origin acidified microenvironment created by excessive osteoclasts causes irreversible bone mineral dissolution and organic degradation during osteoclastic resorption. However, current clinically available approaches are mainly developed from the perspective of osteoclast biology rather than the critical acidified niche. Here, we developed a smart "nanosacrificial layer" consisting of sodium bicarbonate (NaHCO3)-containing and tetracycline-functionalized nanoliposomes (NaHCO3-TNLs) that can target bone surfaces and respond to external secreted acidification from osteoclasts, preventing osteoporosis. In vitro and in vivo results prove that this nanosacrificial layer precisely inhibits the initial acidification of osteoclasts and initiates a chemically regulated biocascade to remodel the bone microenvironment and realize bone protection: extracellular acid-base neutralization first inhibits osteoclast function and also promotes its apoptosis, in which the apoptosis-derived extracellular vesicles containing RANK (receptor activator of nuclear factor-κ B) further consume RANKL (RANK ligand) in serum, achieving comprehensive osteoclast inhibition. Our therapeutic strategy for osteoporosis is based on original and precise acid-base neutralization, aiming to reestablish bone homeostasis by using a smart nanosacrificial layer that is able to induce chemically regulated biocascade effects. This study also provides a novel understanding of osteoporosis therapy in biomedicine and clinical treatments.


Asunto(s)
Huesos/metabolismo , Nanoestructuras/química , Osteoclastos/metabolismo , Osteoporosis/prevención & control , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Animales , Resorción Ósea/metabolismo , Dióxido de Carbono/química , Colesterol/química , Femenino , Humanos , Lecitinas/química , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosfatidiletanolaminas/metabolismo , Polietilenglicoles/metabolismo , Ligando RANK/metabolismo , Bicarbonato de Sodio/química , Propiedades de Superficie , Tetraciclina/química
2.
Nat Nanotechnol ; 19(7): 1044-1054, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499860

RESUMEN

Bone is the most common site of metastasis, and although low proliferation and immunoediting at the early stage make existing treatment modalities less effective, the microenvironment-inducing behaviour could be a target for early intervention. Here we report on a spatiotemporal coupling interaction between tumour cells and osteoclasts, and named the tumour-associated osteoclast 'tumasteoclast'-a subtype of osteoclasts in bone metastases induced by tumour-migrasome-mediated cytoplasmic transfer. We subsequently propose an in situ decoupling-killing strategy in which tetracycline-modified nanoliposomes encapsulating sodium bicarbonate and sodium hydrogen phosphate are designed to specifically release high concentrations of hydrogen phosphate ions triggered by tumasteoclasts, which depletes calcium ions and forms calcium-phosphorus crystals. This can inhibit the formation of migrasomes for decoupling and disrupt cell membrane for killing, thereby achieving early prevention of bone metastasis. This study provides a research model for exploring tumour cell behaviour in detail and a proof-of-concept for behaviour-targeting strategy.


Asunto(s)
Neoplasias Óseas , Osteoclastos , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/prevención & control , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Animales , Humanos , Ratones , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Liposomas/química , Femenino
3.
Theranostics ; 9(9): 2439-2459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131046

RESUMEN

Mitochondrial dysfunction and oxidative stress damage are hallmarks of osteoarthritis (OA). Mesenchymal stem cell (MSC)-derived exosomes are important in intercellular mitochondria communication. However, the use of MSC exosomes for regulating mitochondrial function in OA has not been reported. This study aimed to explore the therapeutic effect of MSC exosomes in a three dimensional (3D) printed scaffold for early OA therapeutics. Methods: We first examined the mitochondria-related proteins in normal and OA human cartilage samples and investigated whether MSC exosomes could enhance mitochondrial biogenesis in vitro. We subsequently designed a bio-scaffold for MSC exosomes delivery and fabricated a 3D printed cartilage extracellular matrix (ECM)/gelatin methacrylate (GelMA)/exosome scaffold with radially oriented channels using desktop-stereolithography technology. Finally, the osteochondral defect repair capacity of the 3D printed scaffold was assessed using a rabbit model. Results: The ECM/GelMA/exosome scaffold effectively restored chondrocyte mitochondrial dysfunction, enhanced chondrocyte migration, and polarized the synovial macrophage response toward an M2 phenotype. The 3D printed scaffold significantly facilitated the cartilage regeneration in the animal model. Conclusion: This study demonstrated that the 3D printed, radially oriented ECM/GelMA/exosome scaffold could be a promising strategy for early OA treatment.


Asunto(s)
Materiales Biocompatibles/farmacología , Condrocitos/efectos de los fármacos , Células Madre Mesenquimatosas/química , Osteocondritis/terapia , Regeneración/efectos de los fármacos , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Cartílago/patología , Movimiento Celular/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Exosomas/química , Exosomas/metabolismo , Matriz Extracelular/química , Femenino , Gelatina/química , Humanos , Tinta , Macrófagos/citología , Macrófagos/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Metacrilatos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteocondritis/metabolismo , Osteocondritis/patología , Impresión Tridimensional/instrumentación , Conejos , Regeneración/fisiología , Estereolitografía/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA