Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 154: 106568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739818

RESUMEN

This in vitro study aimed to put forward the development and investigation of a novel Mixed Reality (MR)-based dental implant navigation method and evaluate implant accuracy. Data were collected using 3D-cone beam computed tomography. The MR-based navigation system included a Hololens headset, an NDI (Northern Digital Inc.) Polaris optical tracking system, and a computer. A software system was developed. Resin models of dentition defects were created for a randomized comparison study with the MR-based navigation implantation system (MR group, n = 25) and the conventional free-hand approach (FH group, n = 25). Implant surgery on the models was completed by an oral surgeon. The precision and feasibility of the MR-based navigation method in dental implant surgery were assessed and evaluated by calculating the entry deviation, middle deviation, apex deviation, and angular deviation values of the implant. The system, including both the hardware and software, for the MR-based dental implant navigation method were successfully developed and a workflow of the method was established. Three-Dimensional (3D) reconstruction and visualization of the surgical instruments, dentition, and jawbone were achieved. Real-time tracking of implant tools and jaw model, holographic display via the MR headset, surgical guidance, and visualization of the intraoperative implant trajectory deviation from the planned trajectory were captured by our system. The MR-based navigation system was with better precise than the free-hand approach for entry deviation (MR: 0.6914 ± 0.2507 mm, FH: 1.571 ± 0.5004 mm, P = 0.000), middle deviation (MR: 0.7156 ± 0.2127 mm, FH: 1.170 ± 0.3448 mm, P = 0.000), apex deviation (MR: 0.7869 ± 0.2298 mm, FH: 0.9190 ± 0.3319 mm, P = 0.1082), and angular deviation (MR: 1.849 ± 0.6120°, FH: 4.933 ± 1.650°, P = 0.000).


Asunto(s)
Realidad Aumentada , Implantes Dentales , Cirugía Asistida por Computador , Cirugía Asistida por Computador/métodos , Proyectos Piloto , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Diseño Asistido por Computadora
2.
J Dent ; 124: 104240, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872224

RESUMEN

OBJECTIVES: Infrared dynamic navigation systems can be categorized into active and passive based on whether the surgical instruments can emit or only reflect light. This in vitro study aimed to compare the accuracy of implant placement and the learning curve of both active and passive dynamic navigation systems, using different registration methods. METHODS: Implants (n = 704) were placed in 64 sets of models and divided into active (Yizhime, DCARER, Suzhou, China) and passive (Iris-Clinic, EPED, Kaohsiung, China) dynamic navigation groups. Both marker point-based registration (M-PBR) and feature point-based registration (F-PBR) were employed for the two groups. Based on preoperative and postoperative cone-beam computed tomography imaging, the coronal, midpoint, apical, and angular deviations were analyzed from 2D and 3D views. The operation time was recorded for each group. RESULTS: The active dynamic navigation group exhibited significantly higher accuracy than the passive dynamic navigation group (angular deviation, 4.13 ± 2.39° versus 4.62 ± 3.32°; coronal global deviation, 1.48 ± 0.60 versus 1.86 ± 1.12 mm; apical global deviation, 1.75 ± 0.81 versus 2.20 ± 1.68 mm, respectively). Significant interaction effects were observed for both registration methods and four quadrants with different dynamic navigation systems. Learning curves for the two dynamic navigation groups approached each other after 12 procedures, and finally converged after 27 procedures. CONCLUSIONS: The accuracy of active dynamic navigation system was superior to that of passive dynamic navigation system. Different combinations of dynamic navigation systems, registration methods, and implanted quadrants displayed various interactions. CLINICAL SIGNIFICANCE: Our findings could provide guidance for surgeons in choosing an appropriate navigation system in various implant surgeries. Furthermore, the time required by surgeons to master the technique was calculated. Nevertheless, there are certain limitations in this in vitro study, and therefore further research is required.


Asunto(s)
Implantes Dentales , Cirugía Asistida por Computador , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea/métodos , Imagenología Tridimensional/métodos , Curva de Aprendizaje , Cirugía Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA