Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mater Chem B ; 12(17): 4217-4231, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596904

RESUMEN

Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block ß-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Impresión Tridimensional , Sistema Nervioso Simpático , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Animales , Conejos , Sistema Nervioso Simpático/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Andamios del Tejido/química , Propranolol/farmacología , Propranolol/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Gelatina/química , Osteogénesis/efectos de los fármacos , Durapatita/química , Durapatita/farmacología
2.
Biomater Adv ; 151: 213475, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37267749

RESUMEN

Digital light projection (DLP) printing of hydroxyapatite (HAp) bioceramic provides a promising strategy for fabrication of complex personalized bio-tooth root scaffold with high-resolution. However, it is still a challenge to fabricate bionic bio-tooth root with satisfied bioactivity and biomechanics. This research studied the HAp-based bioceramic scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. Compared to natural decellularized dentine (NDD) scaffolds with unitary shape and restricted mechanical properties, those DLP printing bio-tooth roots with natural size, high precision appearance, excellent structure, and a smooth surface were successfully manufactured, which met various shape and structure requirements for personalized bio-tooth regeneration. Moreover, the bioceramic sintering at 1250 °C enhanced the physicochemical properties of HAp and exhibited good elastic modulus (11.72 ± 0.53 GPa), which was almost twice of early NDD (4.76 ± 0.75 GPa). To further improve the surface activity of sintered biomimetic, the nano-HAw (nano-hydroxyapatite whiskers) coating deposited by hydrothermal treatment increased the mechanical properties and surface hydrophilicity, which indicated positive effects on dental follicle stem cells (DFSCs)' proliferation and enhanced the DFSCs osteoblastic differentiation in vitro. Subcutaneous transplantation in nude mice and in-situ transplantation in rat alveolar fossa proved that the nano-HAw-containing scaffold could promote the DFSCs differentiate into periodontal ligament-like enthesis formation. In conclusion, by combining the optimized sintering temperature and modified nano-HAw interface through hydrothermal treatment, the DLP-printing of HAp-based bioceramic with favorable bioactivity and biomechanics is a promising candidate for personalized bio-root regeneration.


Asunto(s)
Biónica , Andamios del Tejido , Ratones , Ratas , Animales , Andamios del Tejido/química , Fenómenos Biomecánicos , Ratones Desnudos , Durapatita/farmacología , Durapatita/química , Impresión Tridimensional , Regeneración
3.
Int J Nanomedicine ; 18: 5815-5830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869064

RESUMEN

Purpose: Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano ß-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods: PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results: The FDM-printed PLA/nano ß-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano ß-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion: The FDM-printed PLA/nano-ß-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Osteogénesis , Poliésteres/química , Huesos , Impresión Tridimensional
4.
Mater Sci Eng C Mater Biol Appl ; 130: 112423, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34702546

RESUMEN

The current gold standard for auricular reconstruction after microtia or ear trauma is the autologous cartilage graft with an autologous skin flap overlay. Harvesting autologous cartilage requires an additional surgery that may result in donor area complications. In addition, autologous cartilage is limited and the auricular reconstruction requires complex sculpting, which requires excellent clinical skill and is very time consuming. This work explores the use of 3D printing technology to fabricate bioactive artificial auricular cartilage using chondrocyte-laden gelatin methacrylate (GelMA) and polylactic acid (PLA) for auricle reconstruction. In this study, chondrocytes were loaded within GelMA hydrogel and combined with the 3D-printed PLA scaffolds to biomimetic the biological mechanical properties and personalized shape. The printing accuracy personalized scaffolds, biomechanics and chondrocyte viability and biofunction of artificial auricle have been studied. It was found that chondrocytes were fixed in the PLA auricle scaffolds via GelMA hydrogels and exhibited good proliferative properties and cellular activity. In addition, new chondrocytes and chondrogenic matrix, as well as type II collagen were observed after 8 weeks of implantation. At the same time, the transplanted auricle complex kept full and delicate auricle shape. This study demonstrates the potential of using 3D printing technology to construct in vitro living auricle tissue. It shows a great prospect in the clinical application of auricle regeneration.


Asunto(s)
Condrocitos , Gelatina , Hidrogeles , Metacrilatos , Poliésteres , Impresión Tridimensional , Regeneración , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA