Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(49): 22651-22661, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36411055

RESUMEN

Biological systems employ non-equilibrium self-assembly to create ordered nanoarchitectures with sophisticated functions. However, it is challenging to construct artificial non-equilibrium nanoassemblies due to lack of control over assembly dynamics and kinetics. Herein, we design a series of linear polymers with different side groups for further coordination-driven self-assembly based on shape-complementarity. Such a design introduces a main-chain confinement which effectively slows down the assembly process of side groups, thus allowing us to monitor the real-time evolution of lychee-like nanostructures. The function related to the non-equilibrium nature is further explored by performing photothermal conversion study. The ability to observe and capture non-equilibrium states in this supramolecular system will enhance our understanding of the thermodynamic and kinetic features as well as functions of living systems.


Asunto(s)
Nanoestructuras , Polímeros , Polímeros/química , Nanoestructuras/química , Termodinámica , Cinética
2.
J Am Chem Soc ; 144(36): 16559-16571, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35998652

RESUMEN

Molecular geometry represents one of the most important structural features and governs physical properties and functions of materials. Nature creates a wide array of substances with distinct geometries but similar chemical composition with superior efficiency and precision. However, it remains a formidable challenge to construct abiological macromolecules with various geometries based on identical repeating units, owing to the lack of corresponding synthetic approaches for precisely manipulating the connectivity between monomers and feasible techniques for characterizing macromolecules at the single-molecule level. Herein, we design and synthesize a series of tetratopic monomers with chevron stripe shape which serve as the key precursors to produce four distinct types of metallo-macromolecules with well-defined geometries, viz., the concentric hexagon, helicoid polymer, ladder polymer, and cross-linked polymer, via platinum-acetylide couplings. Concentric hexagon, helicoid, and ladder metallo-polymers are directly visualized by transmission electron microscopy, atomic force microscopy, and ultra-high-vacuum low-temperature scanning tunneling microscopy at the single-molecule level. Finally, single-walled carbon nanotubes (SWCNTs) are selected as the guest to investigate the structure-property relationship based on such macromolecules, among which the helicoid metallo-polymer shows high efficiency in wrapping SWCNTs with geometry-dependent selectivity.


Asunto(s)
Nanotubos de Carbono , Polímeros , Sustancias Macromoleculares/química , Microscopía de Fuerza Atómica , Nanotecnología/métodos , Nanotubos de Carbono/química , Polímeros/química
3.
Sensors (Basel) ; 19(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583520

RESUMEN

A biosensor based on a combination of cytochrome c (Cyt c), electrochemical reduced graphene oxides (ERGO), and gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) was fabricated. The proposed biosensor electrode was denoted as GCE/ERGO-Nafion/AuNPs/Cyt c/Nafion, where ERGO-Nafion was deposited by dropping graphene oxides-Nafion mixed droplet first and following electrochemical reduction, AuNPs were directly deposited on the surface of the ERGO-Nafion modified electrode by electrochemical reduction, and other components were deposited by the dropping-dry method. The effect of the deposition amount of AuNPs on direct electrochemistry of Cyt c in the proposed electrode was investigated. The hydrogen peroxide was taken to evaluate the performance of the proposed biosensor. The results showed that the biosensor has great analytical performance, including a high sensitivity, a wide linear range, a low detection limit, and good stability, reproducibility, and reliability.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Peróxido de Hidrógeno/aislamiento & purificación , Nanopartículas del Metal/química , Carbono/química , Citocromos c/química , Electroquímica , Electrodos , Polímeros de Fluorocarbono/química , Peróxido de Hidrógeno/química , Límite de Detección , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA