RESUMEN
An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 µM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.
Asunto(s)
Colorantes , Nanopartículas , Humanos , Células HeLa , Compuestos de Boro/farmacología , Imagen Óptica , PolímerosRESUMEN
Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.
Asunto(s)
Encéfalo , Diferenciación Celular , Mitocondrias , Organoides , Humanos , Organoides/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Encéfalo/efectos de los fármacos , Poliestirenos/toxicidad , Células Madre/efectos de los fármacosRESUMEN
As a ROS scavenger, resveratrol exerts a neuroprotective effect by polarizing the M1 microglia to the anti-inflammatory M2 phenotype for ischemic stroke treatment. However, the obstruction of the blood-brain barrier (BBB) seriously impairs the efficacy of resveratrol. Herein, we develop a stepwise targeting nanoplatform for enhanced ischemic stroke therapy, which is fabricated by pH-responsive poly(ethylene glycol)-acetal-polycaprolactone-poly(ethylene glycol) (PEG-Acetal-PCL-PEG) and modified with cRGD and triphenylphosphine (TPP) on a long PEG chain and a short PEG chain, respectively. The as-designed micelle system features effective BBB penetration through cRGD-mediated transcytosis. Once entering the ischemic brain tissues and endocytosed by microglia, the long PEG shell can be detached from the micelles in the acidic lysosomes, subsequently exposing TPP to target mitochondria. Thus, the micelles can effectively alleviate oxidative stress and inflammation by enhanced delivery of resveratrol to microglia mitochondria, reversing the microglia phenotype through the scavenging of ROS. This work offers a promising strategy to treat ischemia-reperfusion injury.
Asunto(s)
Accidente Cerebrovascular Isquémico , Micelas , Humanos , Especies Reactivas de Oxígeno , Acetales , Resveratrol/farmacología , Resveratrol/uso terapéutico , Polímeros/uso terapéutico , Polietilenglicoles/uso terapéutico , Estrés Oxidativo , Inflamación/tratamiento farmacológicoRESUMEN
INTRODUCTION: Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research. MATERIALS AND METHODS: We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB-GD). HB-GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young's modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation. RESULTS: With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB-5GD)-158 ± 3.2 kPa (HB-20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB-GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures. CONCLUSION: The HB-10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Asunto(s)
Bioimpresión , Dopamina , Hidrogeles , Cartílagos Nasales , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Bioimpresión/métodos , Ratones , Animales , Ingeniería de Tejidos/métodos , Cartílagos Nasales/cirugía , Ensayo de Materiales , Materiales Biocompatibles , CondrocitosRESUMEN
Spatial electronic communications of chromophores are both theoretically and practically fascinating. Despite intramolecular or intermolecular exciton coupling was observed in multichromophoric oligomers and J-aggregates, respectively, it is unusual that they both occur in the same molecule. Herein, ethene-bridged aza-BODIPY dimers with intramolecular exciton splitting have been developed. By encapsulating the dimer into F-127 polymer, J-type aggregated nanoparticles were produced, which showed obvious intermolecular exciton coupling and dramatically redshifted absorption and emission peaks at 936 and 1003â nm, respectively. The fabricated nanoagents have high photothermal conversion ability (η=60.3 %) and are ultra-photostable, leading to complete tumor ablation with 915â nm laser irradiation. This phototherapeutic nanoplatform through modulating both intra- and intermolecular exciton couplings is a valuable paradigm for developing photothermal agents for tumor treatment.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Compuestos de Boro , Polímeros , Nanopartículas/uso terapéutico , Neoplasias/terapiaRESUMEN
The progress of antitumor immunotherapy is usually limited by tumor-associated macrophages (TAMs) that account for the highest proportion of immunosuppressive cells in the tumor microenvironment, and the TAMs can also be reversed by modulating the M2-like phenotype. Herein, a biomimetic polymer magnetic nanocarrier is developed with selectively targeting and polarizing TAMs for potentiating immunotherapy of breast cancer. This nanocarrier PLGA-ION-R837â@âM (PIRâ@âM) is achieved, first, by the fabrication of magnetic polymer nanoparticles (NPs) encapsulating Fe3 O4 NPs and Toll-like receptor 7 (TLR7) agonist imiquimod (R837) and, second, by the coating of the lipopolysaccharide (LPS)-âtreated macrophage membranes on the surface of the NPs for targeting TAMs. The intracellular uptake of the PIRâ@âM can greatly polarize TAMs from M2 to antitumor M1 phenotype with the synergy of Fe3 O4 NPs and R837. The relevant mechanism of the polarization is deeply studied through analyzing the mRNA expression of the signaling pathways. Different from previous reports, the polarization is ascribed to the fact that Fe3 O4 NPs mainly activate the IRF5 signaling pathway via iron ions instead of the reactive oxygen species-induced NF-κB signaling pathway. The anticancer effect can be effectively enhanced through potentiating immunotherapy by the polarization of the TAMs in the combination of Fe3 O4 NPs and R837.
Asunto(s)
Polímeros , Macrófagos Asociados a Tumores , Biomimética , Humanos , Inmunoterapia , Factores Reguladores del Interferón , Fenómenos MagnéticosRESUMEN
Denture impacted in the esophagus of adults has been a complex foreign body for otolaryngologists. We reviewed clinical characteristics, diagnosis, and treatment of these patients and evaluated computed tomography (CT) scans to identify a better method of dealing with such tricky situations. Twenty-nine patients who underwent rigid esophagoscopy were included in this retrospective study conducted at the University hospital. The patients underwent preoperative tests and examinations, including complete blood count, blood type and coagulation, electrocardiogram, and CT. The commonest symptoms were retrosternal pain, dysphagia, and odynophagia. Duration of the foreign body impacted within 24 h was 65.5%. CT findings revealed that 4 of 24 cases had complications in the upper esophagus, with 3 of the 4 cases in the mid-esophagus and 1 in the lower esophagus. Complications were related to the duration and location of the obstruction (P < 0.05). The location and complications based on CT findings were coherent with rigid esophagoscopy findings. Denture impaction in the esophagus can be fatal. Early intervention is crucial for prognosis. CT is used for diagnosing and guiding doctors in managing. The commonest location of impacted dentures was the upper esophagus with a lower incidence of complications. The incidence of an impacted denture in the mid-esophagus was low but with a high risk of complications. The incidence of an impacted denture in the lower esophagus was rare. Surgery and proper treatment ensure a good prognosis.
Asunto(s)
Dentaduras/efectos adversos , Esofagoscopía/métodos , Esófago/lesiones , Cuerpos Extraños/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Trastornos de Deglución/epidemiología , Trastornos de Deglución/etiología , Esofagoscopía/efectos adversos , Esófago/diagnóstico por imagen , Esófago/cirugía , Femenino , Cuerpos Extraños/complicaciones , Cuerpos Extraños/cirugía , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios RetrospectivosRESUMEN
Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe3 O4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment.
Asunto(s)
Nanopartículas/química , Fármacos Fotosensibilizantes/química , Fototerapia/métodos , Indoles/química , Mitocondrias/metabolismo , Compuestos Organofosforados/química , Polímeros/químicaRESUMEN
This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Diatomeas/fisiología , Dimetilpolisiloxanos/química , Mytilus/fisiología , Nanotubos de Carbono/química , Proteobacteria/fisiología , Titanio/química , Animales , Propiedades de SuperficieRESUMEN
Two thermophilic bacterial strains, designated YIM 77925(T) and YIM 77777, were isolated from two hot springs, one in the Hydrothermal Explosion (Shuirebaozhaqu) area and Frog Mouth Spring in Tengchong county, Yunnan province, south-western China. The taxonomic positions of the two isolates were investigated by a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 50-70 °C, pH 6.0-8.0 and with a NaCl tolerance up to 0.5% (w/v). Colonies are circular, convex, non-transparent and produce yellow pigment. Phylogenetic analyses based on 16S rRNA gene sequences comparison clearly demonstrated that strains YIM 77925(T) and YIM 77777 represent members of the genus Thermus, and they also detected low-level similarities of 16S rRNA gene sequences (below 97%) compared with all other species in this genus. Their predominant menaquinone was MK-8. The genomic DNA G+C contents of strains YIM 77925(T) and YIM 77777 were 65.6 mol% and 67.2 mol%, respectively. Based on the results of physiological and biochemical tests and phylogenetic analyses, strains YIM 77925(T) and YIM 77777 could not be classified as representing any species of the genus Thermus with a validly published name. Thus the two strains are considered to represent a novel species of the genus Thermus, for which the name Thermus caliditerrae sp. nov. is proposed. The type strain is YIM 77925(T) (â=âDSM 25901(T)â=âCCTCC 2012061(T)).
Asunto(s)
Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/microbiología , Filogenia , Thermus/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Datos de Secuencia Molecular , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Thermus/genética , Thermus/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
African swine fever (ASF) is a highly contagious and severe hemorrhagic disease caused by the African swine fever virus (ASFV). The continuous spread of ASFV affects the safety of the global meat supply; therefore, the establishment of sensitive and specific detection methods for ASFV has become an important hot spot in food safety. Herein, we developed a flexible magnetoelastic (ME) biosensor based on PDMS/FeSiB/QDs composite films for the detection of ASFV P72 protein. Based on the high luminescence performance of CsPbBr3 quantum dots and the excellent magnetoelastic effect of FeSiB, flexible ME biosensors convert stress signals generated by antibody-antigen-specific binding into optical and electromagnetic signals. The nanostructures covalently linked by quantum dots and PDMS provide biomodification sites for ASFV P72 antibodies, simplifying the functionalization modification process compared to the case of conventional biosensors. The deformation of the PDMS film is amplified, and the conversion of surface stress signals to electrical signals is enhanced by exposing the biosensor to a uniform magnetic field. The experimental results proved that the flexible ME biosensor has a wide linear range of 10 ng mL-1-100 µg mL-1, and the detection limit is as low as 0.079 ng mL-1. Moreover, the flexible ME biosensor also shows good stability, sensitivity and specificity, confirming the potential for early disease screening.
Asunto(s)
Virus de la Fiebre Porcina Africana , Técnicas Biosensibles , Dimetilpolisiloxanos , Puntos Cuánticos , Técnicas Biosensibles/métodos , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Dimetilpolisiloxanos/química , Puntos Cuánticos/química , Animales , Proteínas Virales/química , Porcinos , Elasticidad , Límite de DetecciónRESUMEN
Magnetorheological elastomer thin films (MREFs) exhibit remarkable deformability and an adjustable modulus under magnetic fields, rendering them promising in fields such as robotics, flexible sensors, and biomedical engineering. Here, we fabricated MREF by introducing magnetostrictive particles (MSPs) and evaluated the magneto-mechanical coupling effect on the enhancement of sensitivity. The saturation magnetization (Ms) in a parallel anisotropic TbDyFe-PDMS MREF was 5.8 emu/g, and the initial tensile modulus was 55% greater than that of an Iso MREF. We propose a nonlinear magnetorheological formula on the magnetostriction effect, incorporating magnetic dipole interactions and the nonlinear prestress of magnetic particles. This formula highlights the complex nonlinear relationship between the external magnetic field (H) and the key parameters that affect the enhanced MR effect of MSPs-MREF, such as saturation magnetization, remanence (Mr), magnetostriction constant (λs) and stress deviator in ferromagnetic particles (Sed) in the magnetic chain structure. Furthermore, we validate the influence of the key parameters of the rectified magnetorheological formula on a nonlinear magneto-mechanical behavior of MSPs-MREF in PDMS-based MSPs-MREF models by using finite-element simulations. Finally, we developed a biosensor based on MSPs-MREF to detect human serum albumin at low concentrations in human urine samples. There is a 4-fold increase in sensitivity, a lower detection of limit (0.442 µg/mL), and a faster response time (15 min) than traditional biosensors, which in the future might provide an effective way of detecting biomolecules of low concentrations.
Asunto(s)
Elastómeros , Robótica , Humanos , Campos Magnéticos , ImanesRESUMEN
The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy.
Asunto(s)
Cromo , Corrosión , Aleaciones Dentales , Porcelana Dental/química , Espectroscopía Dieléctrica/métodos , Níquel , Espectroscopía de Fotoelectrones/métodos , Células 3T3 , Animales , Ratones , Propiedades de Superficie , Difracción de Rayos XRESUMEN
Hydrogels have attracted increasing attention in the biomedical field due to their similarity in structure and composition to natural extracellular matrices. However, they have been greatly limited by their low mechanical strength and self-adhesion for further application. Here, a gel-nanofiber material is designed for wound healing, which synergistically combines the benefits of hydrogels and nanofibers and can overcome the bottleneck of poor mechanical strength and self-adhesion in hydrogels and inadequate healing environment created by nanofibers. First, a nanofiber scaffold composed of polycaprolactone/poly(citric acid)-ε-lysine (PCL/PCE) nanofibers is fabricated via a new strategy of microfluidic electrospinning, which could provide a base for hyaluronic acid-polylysine (HE) gel growth on nanofibers. The prepared HE@PCL/PCE gel-nanofiber possesses high tensile strength (24.15 ± 1.67 MPa), excellent air permeability (656 m3/m2 h kPa), outstanding self-adhesion property, and positive hydrophilicity. More importantly, the prepared gel-nanofiber dressing shows good cytocompatibility and antibacterial properties, achieving a high wound-healing rate (92.48%) and 4.685 mm granulation growth thickness within 12 days. This material may open a promising avenue for accelerating wound healing and tissue regeneration, providing potential applications in clinical medicine.
Asunto(s)
Nanofibras , Nanofibras/química , Microfluídica , Antibacterianos , Cicatrización de Heridas , Tecnología , Vendajes , Hidrogeles/farmacología , Poliésteres/químicaRESUMEN
Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.
Asunto(s)
Antibacterianos , Eucariontes , Antibacterianos/análisis , Biopelículas , Clorofila A , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Plásticos , Tereftalatos Polietilenos , AguaRESUMEN
Micro-nano bubbles (MNBs) play important roles in the reduction of membrane fouling during membrane separation; however, such improvements are always attributed to the reduced concentration polarization on the surface of membranes and little attention has been paid on the variations of physicochemical properties of the feed caused by MNBs. In this study, the separation efficiencies of the feed containing humic acid (HA), bovine serum albumin (BSA), sodium alginate (SA) or dyes can be improved by MNBs during ultrafiltration, and the normalized fluxes can be maximally increased to 139% and 127% in the dead-end and cross-flow modes, respectively in the treatment of HA solution. We further reveal that the decreased apparent viscosity of the feed in the presence of MNBs is the key factor that enhances the normalized flux during ultrafiltration. This study gives new insight on the importance of MNBs in membrane separation and provides valuable clues for other chemical processes.
Asunto(s)
Ultrafiltración , Purificación del Agua , Sustancias Húmicas , Membranas Artificiales , ViscosidadRESUMEN
Epidemiological studies demonstrate that men with periodontitis are also susceptible to benign prostatic hyperplasia (BPH) and that periodontal treatment can improve the prostatic symptom. However, molecular links of this relationship are largely unknown. The goal of the current study was to elucidate the effects of experimental periodontitis on the hyperplasia of prostate and whether oxidative stress and inflammation participated in this process. For this purpose, ligature-induced periodontitis, testosterone-induced BPH, and the composite models in rats were established. Four weeks later, all the rats were sacrificed and the following items were measured: alveolar bone loss and histological examination of periodontal tissues were taken to assess the establishment of periodontitis model, prostate index and histological examination of prostate tissues were taken to test the establishment of the BPH model, inflammatory cytokines in plasma were assessed, and Bax/Bcl-2 proteins related to cell apoptosis were analyzed via western blot analysis. To further investigate whether oxidative stress participates in the aggravation of BPH, in vitro models were also conducted to measure the production of intracellular reactive oxygen species (ROS) and hydrogen peroxide (H2O2) concentration. We found that simultaneous periodontitis and BPH synergistically aggravated prostate histological changes, significantly increased Ki67 proliferation, and reduced apoptosis in rat prostate tissues. Also, our results showed that periodontal ligation induced increased Bcl-2 protein expression, whereas Bax expression was decreased in BPH rats than in normal rats. Compared with the control group, periodontitis and BPH both significantly enhanced inflammatory cytokine levels of TNF-α, IL-6, IL-1ß, and CRP. Furthermore, Porphyromonas gingivalis lipopolysaccharide induced enhanced generation of intracellular expression of ROS and H2O2 in BPH-1 cells. Our experimental evidence demonstrated that periodontitis might promote BPH development through regulation of oxidative stress and inflammatory process, thus providing new strategies for prevention and treatment of BPH.
Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Estrés Oxidativo , Periodontitis/complicaciones , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proceso Alveolar/metabolismo , Proceso Alveolar/microbiología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Lipopolisacáridos/aislamiento & purificación , Lipopolisacáridos/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Periodontitis/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/metabolismo , Próstata/efectos de los fármacos , Próstata/patología , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/patología , Ratas Sprague-Dawley , Transducción de Señal , TestosteronaRESUMEN
The emission characteristics of VOCs from three typical rubber manufacture industries were studied by GC-MS/FID. Maximum incremental reactivity(MIR) and fractional aerosol coefficient(FAC) were employed to evaluate the ozone formation potential(OFP) and secondary organic aerosol(SOA) formation potential. The results show that the VOC types emitted from the manufacturing of rubber products mainly include alkanes, ketones, aldehydes, alcohols, and benzene series. For traditional rubber products manufactured through rubber mixing and vulcanization, the main pollutants are ketones and alcohols, whereas for production processes involving gluing and painting, the main pollutants belong to the benzene series. In terms of ozone impact, the traditional processes contribute to ozone formation mainly through oxygenated hydrocarbons. In industries that utilize adhesives and paints, the extensive use of these organic solvents lead to a significantly higher contribution of the benzene series than other VOC species to ozone formation; the benzene series account for 82.9% of the total contribution. In terms of SOA impact, the benzene series are the main contributor to SOA, whereas the contribution of VOCs from traditional processes is small; hence, SOA primarily originates from the gluing and painting processes. Therefore, in traditional production of rubber products through rubber mixing and vulcanization, the emission of oxygenated hydrocarbons should be preferentially controlled, whereas for rubber industries utilizing gluing and painting processes, the emission of benzene series should be preferentially controlled.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Goma , Compuestos Orgánicos Volátiles/análisisRESUMEN
In order to explore the mechanism underlying chemosensation in Eocanthecona furcellata, the external morphology of its antennae and the type, quantity, distribution and ultrastructure of the sensilla were observed on both sexes of adults and 5th-instar nymphs using scanning electron microscopy. The results showed that the antennae of E. furcellata consisted of three parts: scape, pedicel and flagellum. There were five types of sensilla on the antennae, which included sensilla trichoidea (ST), sensilla chaetica (SCh), sensilla coeloconica (SCo), sensilla basiconica (SB) and squamifornia denticles (SD). Further, there were 4 subtypes of ST and SB and 2 subtypes of SCo and SCh. The number of sensilla on nymphs was significantly lower than that on adults. The antennae of adults showed sexual dimorphism, as the number of sensilla on female adults was higher than that on male adults. SB4 was found only on females and SCo2 was found only on males. These inter-sexual differences may be related to chemoreception of sex pheromone and chemical predation location. The morphology and putative functions of each sensilla were compared and discussed. These results provide a reference for further study of the behavioral biology, chemical ecology and electrophysiology of insects, and also provides a scientific basis for new ways of biological control.
Asunto(s)
Heterópteros , Sensilos , Animales , Antenas de Artrópodos , Femenino , Masculino , Microscopía Electrónica de Rastreo , Caracteres SexualesRESUMEN
As a kind of biocompatible material with long history, silk fibroin is one of the ideal platforms for on-skin and implantable electronic devices, especially for self-powered systems. In this work, to solve the intrinsic brittleness as well as poor chemical stability of pure silk fibroin film, mesoscopic doping of regenerated silk fibroin is introduced to promote the secondary structure transformation, resulting in huge improvement in mechanical flexibility (â¼250% stretchable and 1000 bending cycles) and chemical stability (endure 100 °C and 3-11 pH). Based on such doped silk film (SF), a flexible, stretchable and fully bioabsorbable triboelectric nanogenerator (TENG) is developed to harvest biomechanical energy in vitro or in vivo for intelligent wireless communication, for example, such TENG can be attached on the fingers to intelligently control the electrochromic function of rearview mirrors, in which the transmittance can be easily adjusted by changing contact force or area. This robust TENG shows great potential application in intelligent vehicle, smart home and health care systems.