Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(18): 7229-7236, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37115508

RESUMEN

4'-Phosphopantetheinylation (4PPTylation) of proteins, which is derived from the hydrolysis of coenzyme A (CoA), is an essential post-translational modification participating in biosynthetic and metabolic pathways. However, due to the lack of specific recognition ligands as well as the shortage of sensitive analytical tools for single-cell analysis, the in-depth exploration of new cellular functions and mechanisms of protein 4PPTylation has been much hampered. In this study, we rationally engineered CoA-imprinted Raman nanotags for the specific recognition of 4PPTylation and thereby developed a molecularly imprinted polymer (MIP)-based plasmonic immunosandwich assay (PISA) for facile probing the 4PPTylation of ALDH1L1 in single cells. The molecularly imprinted nanotags exhibited excellent binding properties, giving a dissociation constant of 10-6 M and cross-reactivity values of less than 10%. The MIP-based PISA enabled the specific and sensitive detection of the level of 4PPTylated ALDH1L1 in single living cells. Particularly, monitoring of the fluctuation of 4PPTylated ALDH1L1 in single cells under simulation by an inhibitor (methotrexate) that acts on a different metabolism pathway was achieved, implying possible crosstalk between two different pathways in folate metabolism. Thus, the imprinted Raman nanotags-PISA provides a promising analytical tool with a single-cell resolution for exploring new functions and elucidating their mechanisms of protein 4PPTylation.


Asunto(s)
Impresión Molecular , Polímeros , Polímeros/química , Proteínas , Polímeros Impresos Molecularmente , Oro/química
2.
Chemistry ; 28(61): e202202052, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35924666

RESUMEN

Nanozymes have attracted wide attention for the unique advantages of low cost, high stability and designability. Molecularly imprinted polymers (MIPs) have demonstrated great potential as a new type of nanozymes due to their excellent specificity and high affinity. However, effective approaches for creating molecularly imprinted nanozymes still remain limited. Herein, reverse microemulsion template docking surface imprinting (RMTD-SI) is reported as a new approach for the rational design and engineering of nanozymes with free substrate access for the ligation of ssDNA sequences. As a proof of the principle, octa-deoxyribonucleotide-imprinted nanoparticles were successfully prepared. Using tetradeoxyribonucleotides and octa-deoxyribonucleotide as substrates, the properties, catalytic activity and behavior of the imprinted nanoparticles were thoroughly investigated. The imprinted nanozyme exhibited an enhanced reaction speed (by up to 41-fold) and good sequence selectivity towards substrate tetra-deoxyribonucleotides. More interestingly, due to the open substrate access, the imprinted nanozyme also allowed the ligation of a ssDNA that fully matched with the imprinted cavity and other ssDNA substrates to form longer sequences, but at the price of substrate selectivity. Thus, this study provides not only a new avenue to the rational design and synthesis of molecularly imprinted nanozymes but also new insights of their catalytic behavior.


Asunto(s)
Impresión Molecular , Nanopartículas , Polímeros/química , Desoxirribonucleótidos
3.
Mikrochim Acta ; 189(8): 289, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879493

RESUMEN

A new method called reverse microemulsion-confined ganglioside-oriented surface imprinting and cladding (RM-GOSIC) is presented for controllable preparation of nanoscale binders for high-affinity targeting gangliosides. Using GM1a, an affordable ganglioside, as a representative ganglioside target, single-core quantum dot GM1a-imprinted and GM1a-cladded polymer (cMIP) nanoparticles were prepared. The prepared cMIP nanoparticles exhibited extremely high affinity towards GM1a, with dissociation constant at the nanomolar level (3-6 nM). The prepared cMIP nanoparticles also recognized structurally closed gangliosides while their cross-reactivity towards other gangliosides remained low. The potential of the cMIP nanoparticles in biomedical applications was demonstrated by cell and tissue imaging. Thus, this approach opened a new access to the synthesis of high-affinity nanoscale binders for targeting gangliosides.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Gangliósidos , Polímeros
4.
Anal Chem ; 91(7): 4831-4837, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30827094

RESUMEN

Molecularly imprinted polymers (MIPs) and aptamers, as effective mimics of antibodies, can overcome only some drawbacks of antibodies. Since they have their own advantages and disadvantages, the combination of MIPs with aptamers could be an ideal solution to produce hybrid alternatives with improved properties and desirable features. Although quite a few attempts have been made in this direction, a facile and controllable approach for the preparation of aptamer-MIP hybrids still remains lacking. Herein, we present a new approach for facile and controllable preparation of aptamer-MIP hybrids for high-specificity and high-affinity recognition toward proteins. An aptamer that can bind the glycoprotein alkaline phosphatase (ALP) with relative weak affinity and specificity was used as a ligand, and controllable oriented surface imprinting was carried out with an in-water self-polymerization system of dopamine. A thin layer of polydopamine was formed to cover the template to an appropriate thickness. After removing the template from the polymer, an aptamer-MIP hybrid with apparently improved affinity and specificity toward ALP was obtained, giving cross-reactivity of 3.2-5.6% and a dissociation constant of 1.5 nM. With this aptamer-MIP hybrid, a plasmonic immunosandwich assay (PISA) was developed. Reliable detection of ALP in human serum by the PISA was demonstrated.


Asunto(s)
Fosfatasa Alcalina/sangre , Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Inmunoensayo , Impresión Molecular , Polímeros/química , Fosfatasa Alcalina/metabolismo , Glicoproteínas/sangre , Glicoproteínas/metabolismo , Humanos
5.
Chem Commun (Camb) ; 59(21): 3075-3078, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36807432

RESUMEN

Using two molecularly imprinted and cladded polymers (cMIPs), an inexpensive, fast and portable plasmonic immuno-sandwich assay (PISA) was rationally developed for high-specificity and ultra-sensitive detection of C-peptide in urine. The dual cMIPs-based PISA allowed healthy individuals to be distinguished from diabetes patients and exhibited several significant merits over existing immunoassays, holding great promise in clinical diagnosis.


Asunto(s)
Impresión Molecular , Polímeros , Humanos , Inmunoensayo , Péptidos
6.
J Mater Chem B ; 10(35): 6716-6723, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35133373

RESUMEN

Enzyme mimics are of significant importance due to their facile preparation, low cost and stability to rigorous environments. Molecularly imprinted polymers (MIPs) have been important synthetic mimics of enzymes. However, effective strategies for the rational design of enzyme-mimicking MIPs have still remained limited. Herein, we report a new strategy, termed affinity gathering-enhanced coupling and thermal cycling amplification (AGEC-TCA), for the rational design and engineering of molecularly imprinted mesoporous silica nanoparticles (MSNs) that are capable of ligating short ssDNA fragments. This strategy relied on enhancing the effective collision probability via binding substrates into highly favorable orientation by product-imprinted MSNs as well as product release via thermal cycling which enabled successive product amplification. Using modified and natural hexadeoxyribonucleotide as templates, the prepared product-imprinted MSNs exhibited a remarkably enhanced reaction speed (by up to 63-fold) as well as excellent sequence specificity towards substrate trideoxyribonucleotides. Thus, this strategy opened up a new avenue to access enzyme mimics via molecular imprinting.


Asunto(s)
Impresión Molecular , Nanopartículas , ADN Ligasas , Polímeros Impresos Molecularmente , Nanopartículas/química , Dióxido de Silicio
7.
Biosens Bioelectron ; 146: 111733, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600624

RESUMEN

Plasmon-enhanced fluorescence (PEF) is an emerging technology for sensitive detection. It relies on the plasmonic effect of a noble metal nanostructure to dramatically enhance the fluorescence of target fluorophores around the metal surface. Because there is a compromise between plasmonic enhancement and fluorescence quenching, it is critical to control the distance between the fluorophore and the metal surface to an appropriate range. This makes the fabrication of plasmonic nanostructures for PEF assays a challenging task. Herein, we report a controllably prepared core-shell plasmonic nanostructure coated with molecularly imprinted polymer (MIP) for sensitive and specific PEF assay. Riboflavin (RF) was used as a test compound in this study. RF-imprinted Ag@SiO2 nanoparticles were prepared in a controllable manner, providing an optimal distance between the metal surface and RF molecules. The obtained hybrid nanostructure allowed for sensitive detection and specific recognition towards the target. Based on the plasmonic hybrid nanostructure, a sensitive and specific PEF assay of RF was developed and successfully applied to the determination of RF in human urine. Thus, the study paved the way for controllable preparation of molecularly imprinted plasmonic nanostructures for sensitive and specific PEF assays.


Asunto(s)
Nanopartículas/química , Riboflavina/orina , Dióxido de Silicio/química , Plata/química , Complejo Vitamínico B/orina , Técnicas Biosensibles/métodos , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Impresión Molecular/métodos , Polímeros/química , Riboflavina/análisis , Espectrometría de Fluorescencia/métodos , Complejo Vitamínico B/análisis
8.
J Hazard Mater ; 179(1-3): 104-12, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20346581

RESUMEN

It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.


Asunto(s)
Automóviles , Cloruros/química , Etilenodiaminas/química , Resinas de Intercambio Iónico/química , Poliestirenos/química , Renio/química , Adsorción , Algoritmos , Difusión , Cinética , Metales/química , Modelos Químicos , Nitrógeno/química , Tamaño de la Partícula , Soluciones , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA