Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(3): 716-21, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26729859

RESUMEN

There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.


Asunto(s)
Implantes Absorbibles , Aleaciones/farmacología , Magnesio/farmacología , Animales , Femenino , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Estudios de Seguimiento , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Implantación de Prótesis , Conejos , Radiografía , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos
2.
Small ; 12(45): 6266-6278, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717233

RESUMEN

Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution-mediated transfection are limited due to low transfection efficiency and insufficient duration of cell-siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio-inspired polymer-mediated reverse transfection system is developed consisting of implantable poly(lactic-co-glycolic acid) (PLGA) scaffolds functionalized with siRNA-lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA-coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA-sLNP-PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose-derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA-sLNP-PLGA scaffolds enhanced bone formation in a mouse model of critical-sized bone defect. Therefore, the bio-inspired reverse transfection system can provide an all-in-one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/fisiología , Osteogénesis/fisiología , Células Madre/citología , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Diferenciación Celular/genética , Humanos , Ácido Láctico/química , Osteogénesis/genética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Interferente Pequeño/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Angew Chem Int Ed Engl ; 54(49): 14753-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482466

RESUMEN

Although the use of reactive oxygen species (ROS) has been extensively studied, current systems employ external stimuli such as light or electrical energy to produce ROS, which limits their practical usage. In this report, biocompatible metals were used to construct a novel electrochemical system that can spontaneously generate H2O2 without any external light or voltage. The corrosion of Mg transfers electrons to Au-decorated oxidized Ti in an energetically favorable process, and the spontaneous generation of H2O2 in an oxygen reduction reaction was revealed to occur at titanium by combined spectroscopic and electrochemical analyses. The controlled release of H2O2 noticeably enhanced in vitro angiogenesis even in the absence of growth factors. Finally, a new titanium implant prototype was developed by Mg incorporation, and its potential for promoting angiogenesis was demonstrated.


Asunto(s)
Inductores de la Angiogénesis/química , Peróxido de Hidrógeno/síntesis química , Magnesio/química , Titanio/química , Materiales Biocompatibles/química , Técnicas Electroquímicas , Peróxido de Hidrógeno/química , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
4.
Adv Healthc Mater ; : e2401260, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38953344

RESUMEN

Polyetheretherketone (PEEK), a bioinert polymer known for its mechanical properties similar to bone, is capable of averting stress shielding. Due to these attributes, it finds applications in diverse fields like orthopedics, encompassing cervical disc replacement for the neck and spine, along with dentistry and plastic surgery. However, due to insufficient bonding with bone, various methods such as hydroxyapatite (HA) coating on the surface are attempted. Nonetheless, the interface between the polymer and ceramic, two different materials, tended to delaminate after transplantation, posing challenges in preventing implant escape or dislodgement. This research delves into the laser-driven hydroxyapatite penetration-synthesis technique. Differing from conventional coating methods that bond layers of dissimilar materials like HA and PEEK, this technology focuses on synthesizing and infiltrating ionized HA within the PEEK substrate resulting in an interface-free HA-PEEK surface. Conversely, HA-PEEK with this technology applied achieves complete, gap-free direct bone-implant integration.  Our research involved the analysis of various aspects. By means of these, we quantitatively assesed the enhanced bone bonding characteristics of HA-PEEK surfaces treated with this approach and offered and explanation for the mechanism responsible for direct bone integration.

5.
J Mater Chem B ; 9(27): 5560-5571, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34169302

RESUMEN

The utilization of cell-manipulating techniques reveals information about biological behaviors suited to address a wide range of questions in the field of life sciences. Here, we introduced an on/off switchable physical stimuli technique that offers precise stimuli for reversible cell patterning to allow regulation of the future direction of adherent cellular behavior by leveraging enzymatically degradable alginate hydrogels with defined chemistry and topography. As a proof of concept, targeted muscle cells adherent to TCP exhibited a reshaped structure when the hydrogel-based physical stimuli were applied. This simple tool offers easy manipulation of adherent cells to reshape their morphology and to influence future direction depending on the characteristics of the hydrogel without limitations of time and space. The findings from this study are broadly applicable to investigations into the relationships between cells and physiological extracellular matrix environments as well as has potential to open new horizons for regenerative medicine with manipulated cells.


Asunto(s)
Dimetilpolisiloxanos/farmacología , Matriz Extracelular/química , Hidrogeles/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dimetilpolisiloxanos/síntesis química , Dimetilpolisiloxanos/química , Hidrogeles/síntesis química , Hidrogeles/química , Ratones , Tamaño de la Partícula , Propiedades de Superficie
6.
Adv Mater ; 33(20): e2007346, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33739558

RESUMEN

Soft neuroprosthetics that monitor signals from sensory neurons and deliver motor information can potentially replace damaged nerves. However, achieving long-term stability of devices interfacing peripheral nerves is challenging, since dynamic mechanical deformations in peripheral nerves cause material degradation in devices. Here, a durable and fatigue-resistant soft neuroprosthetic device is reported for bidirectional signaling on peripheral nerves. The neuroprosthetic device is made of a nanocomposite of gold nanoshell (AuNS)-coated silver (Ag) flakes dispersed in a tough, stretchable, and self-healing polymer (SHP). The dynamic self-healing property of the nanocomposite allows the percolation network of AuNS-coated flakes to rebuild after degradation. Therefore, its degraded electrical and mechanical performance by repetitive, irregular, and intense deformations at the device-nerve interface can be spontaneously self-recovered. When the device is implanted on a rat sciatic nerve, stable bidirectional signaling is obtained for over 5 weeks. Neural signals collected from a live walking rat using these neuroprosthetics are analyzed by a deep neural network to predict the joint position precisely. This result demonstrates that durable soft neuroprosthetics can facilitate collection and analysis of large-sized in vivo data for solving challenges in neurological disorders.


Asunto(s)
Nervio Ciático , Animales , Electrodos Implantados , Nanocompuestos , Polímeros , Ratas
7.
Nat Commun ; 11(1): 4195, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826916

RESUMEN

Realizing a clinical-grade electronic medicine for peripheral nerve disorders is challenging owing to the lack of rational material design that mimics the dynamic mechanical nature of peripheral nerves. Electronic medicine should be soft and stretchable, to feasibly allow autonomous mechanical nerve adaptation. Herein, we report a new type of neural interface platform, an adaptive self-healing electronic epineurium (A-SEE), which can form compressive stress-free and strain-insensitive electronics-nerve interfaces and enable facile biofluid-resistant self-locking owing to dynamic stress relaxation and water-proof self-bonding properties of intrinsically stretchable and self-healable insulating/conducting materials, respectively. Specifically, the A-SEE does not need to be sutured or glued when implanted, thereby significantly reducing complexity and the operation time of microneurosurgery. In addition, the autonomous mechanical adaptability of the A-SEE to peripheral nerves can significantly reduce the mechanical mismatch at electronics-nerve interfaces, which minimizes nerve compression-induced immune responses and device failure. Though a small amount of Ag leaked from the A-SEE is observed in vivo (17.03 ppm after 32 weeks of implantation), we successfully achieved a bidirectional neural signal recording and stimulation in a rat sciatic nerve model for 14 weeks. In view of our materials strategy and in vivo feasibility, the mechanically adaptive self-healing neural interface would be considered a new implantable platform for a wide range application of electronic medicine for neurological disorders in the human nervous system.


Asunto(s)
Electrónica Médica/instrumentación , Electrónica Médica/métodos , Neurocirugia/instrumentación , Neurocirugia/métodos , Nervios Periféricos/fisiología , Animales , Ingeniería Biomédica/instrumentación , Ingeniería Biomédica/métodos , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/cirugía , Oro , Humanos , Masculino , Ensayo de Materiales , Modelos Animales , Tejido Nervioso/patología , Tejido Nervioso/cirugía , Nervios Periféricos/patología , Nervios Periféricos/cirugía , Polímeros/química , Prótesis e Implantes , Ratas , Nervio Ciático , Dispositivos Electrónicos Vestibles
8.
Sci Rep ; 8(1): 13818, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30218086

RESUMEN

The cytotoxicity of alloying elements in newly developed biodegradable metals can be assessed through relatively low-cost and rapid in vitro studies using different cell types. However, such approaches have limitations; as such, additional investigations in small mammalian models are required that recapitulate the physiological environment. In this study, we established a zebrafish (Danio rerio) model for cytotoxicity evaluations that combines the physiological aspects of an animal model with the speed and simplicity of a cell-based assay. The model was used to assess the cytotoxicity of five common alloying elements in biodegradable implant materials. Conventional in vitro testing using heart, liver, and endothelial cell lines performed in parallel with zebrafish studies revealed statistically significant differences in toxicity (up to 100-fold), along with distinct changes in the morphology of the heart, liver, and blood vessels that were undetectable in cell cultures. These results indicate that our zebrafish model is a useful alternative to mammalian systems for accurately and rapidly evaluating the in vivo toxicity of newly developed metallic materials.


Asunto(s)
Aleaciones/toxicidad , Metales/toxicidad , Pruebas de Toxicidad/métodos , Implantes Absorbibles , Aleaciones/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero , Metales/metabolismo , Modelos Animales , Pez Cebra/metabolismo
9.
J Biomed Mater Res A ; 106(6): 1732-1742, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29468791

RESUMEN

Biological responses on biomaterials occur either on their surface or at the interface. Therefore, surface characterization is an essential step in the fabrication of ideal biomaterials for achieving effective control of the interaction between the material surface and the biological environment. Herein, we applied femtosecond laser ablation on electrospun fibrous scaffolds to fabricate various hierarchical patterns with a focus on the alignment of cells. We investigated the simultaneously stimulated response of cardiomyoblasts based on multiple topographical cues, including scales, oriented directions, and spatial arrangements, in the fibrous scaffolds. Our results demonstrated a synergistic effect on cell behaviors of one or more structural arrangements in a homogeneous orientation, whereas antagonistic effects were observed for cells arranged on a surface with heterogeneous directions. Taken together, these results indicate that our hierarchically patterned fibrous scaffolds may be useful tools for understanding the cellular behavior on fibrous scaffolds used to mimic an extracellular matrix-like environment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1732-1742, 2018.


Asunto(s)
Materiales Biocompatibles/química , Mioblastos Cardíacos/citología , Andamios del Tejido/química , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Técnicas Electroquímicas , Rayos Láser , Ratas , Propiedades de Superficie , Ingeniería de Tejidos/métodos
10.
Sci Rep ; 8(1): 17743, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30531804

RESUMEN

Utilization of biodegradable metals in biomedical fields is emerging because it avoids high-risk and uneconomic secondary surgeries for removing implantable devices. Mg and its alloys are considered optimum materials for biodegradable implantable devices because of their high biocompatibility; however, their excessive and uncontrollable biodegradation is a difficult challenge to overcome. Here, we present a novel method of inhibiting Mg biodegradation by utilizing reduced nicotinamide adenine dinucleotide (NADH), an endogenous cofactor present in all living cells. Incorporating NADH significantly increases Mg corrosion resistance by promoting the formation of thick and dense protective layers. The unique mechanism by which NADH enables corrosion inhibition was discovered by combined microscopic and spectroscopic analyses. NADH is initially self-adsorbed onto the surface of Mg oxide layers, preventing Cl- ions from dissolving Mg oxides, and later recruits Ca2+ ions to form stable Ca-P protective layers. Furthermore, stability of NADH as a corrosion inhibitor of Mg under physiological conditions were confirmed using cell tests. Moreover, excellent cell adhesion and viability to Mg treated with NADH shows the feasibility of introduction of NADH to Mg-based implantable system. Our strategy using NADH suggests an interesting new way of delaying the degradation of Mg and demonstrates potential roles for biomolecules in the engineering the biodegradability of metals.


Asunto(s)
Materiales Biocompatibles/farmacología , Magnesio/farmacología , NAD/metabolismo , Células 3T3 , Implantes Absorbibles , Aleaciones/farmacología , Animales , Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Corrosión , Iones/metabolismo , Ensayo de Materiales/métodos , Ratones , Propiedades de Superficie
11.
J Craniomaxillofac Surg ; 45(10): 1639-1646, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28818322

RESUMEN

Mg-Ca-Zn alloy has been suggested for the application of fixation materials during maxillofacial surgery. We investigated the stability of Mg-Ca-Zn alloy for clinical application during orthognathic surgery. The finite element model for the fixation of sagittal split ramus osteotomy was constructed. In the bicortical screw fixation of the mandible setback condition, the stress distributions of Mg-Ca-Za alloy, polylactic acid polymer, and titanium were evaluated using the virtual model with occlusal loading of 132 N. The deformations of the three different materials of fixation screw were observed according to masticatory force ranging from 132 to 1,000 N. When comparing the stress distribution placed on cortical bone between the polymer and magnesium alloy groups, the magnesium alloy screws could bear more stress, thereby decreasing the stress, which might be distributed to other biologic components, such as the condyle and cortical ramus of the mandible. Deformations of the screws according to functional load were minimal, and the deformation remained <0.21 mm at the initial functional load of the mandible after surgery, regardless of materials used. The biodegradable magnesium alloy screw can bear more stress and decrease the detrimental effect on the stability of sagittal split ramus osteotomy setback surgery.


Asunto(s)
Implantes Absorbibles , Aleaciones , Tornillos Óseos , Osteotomía Sagital de Rama Mandibular/instrumentación , Polímeros , Calcio , Diseño de Equipo , Análisis de Elementos Finitos , Imagenología Tridimensional , Magnesio , Ensayo de Materiales , Modelos Teóricos , Titanio , Zinc
12.
J Tissue Eng Regen Med ; 11(10): 2710-2724, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27138694

RESUMEN

We report here the effect of micro-environmental changes from biodegradable magnesium alloys on the activities of cells - osteoblasts, osteoclasts and macrophages - which play critical roles in each phase of the bone-regeneration process. Despite positive bone formation effects from several in vivo studies, minimal progress has been made in identifying underlying mechanisms through in vitro studies, which are currently concentrated on osteoblastic activities. The observed in vitro and in vivo results indicated that alkaline pH and released magnesium and zinc ions derived from Mg-5 wt% Ca-1 wt% Zn alloy biodegradation promote the progress of bone formation. In contrast, alkaline pH and magnesium ions remarkably suppressed osteoclastic activities and pro-inflammatory cytokine production, closely related to osteolysis and prosthesis failure. Findings from the present study conclude that the degradation of Mg-5 wt% Ca-1 wt% Zn alloys can promote new bone formation by simultaneously affecting the complex combination of variable cellular activities and phases. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Aleaciones/farmacología , Regeneración Ósea/efectos de los fármacos , Calcio/farmacología , Magnesio/farmacología , Zinc/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Iones , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Conejos
13.
Adv Healthc Mater ; 5(18): 2396-405, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27390259

RESUMEN

Implanted material surfaces make direct contact with body tissues to work on its own purpose. Therefore, studies of the surface properties of implantable materials that determine cell fate are very important for successful implantation. Although numerous studies have addressed the relationship between cells and material surfaces, nonmetallic surfaces and metallic surfaces likely produce different cellular responses because of their intrinsic differences in surface energy, roughness, and chemical composition. Moreover, given the nontransparent property of metal materials, which hampers the real-time imaging of cellular behavior, a detailed cellular-level analysis at the metal-tissue interface has not been performed. In this study, metal-based cell culture platforms (MCPs) with defined microscale topographical patterns are developed using a combination of photolithography and direct current magnetron sputtering techniques. The MCPs allow to observe vascular cells on metals in real time and identify the selective regulation of human aortic smooth muscle cells and Human umbilical vein endothelial cells (HUVECs) by metallic surface topography. Additionally, atomic force microscopy, contact angles, and energy-dispersive X-ray spectroscopy analyses show that the MCPs exhibit nearly identical chemical properties with their bulk counterparts, demonstrating that MCPs can be utilized as an in vitro cell culture platform system for understanding the cellular behavior on metal substrates.


Asunto(s)
Aorta/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Membranas Artificiales , Metales/química , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Aorta/citología , Técnicas de Cultivo de Célula , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Propiedades de Superficie
14.
J Biomed Mater Res B Appl Biomater ; 103(4): 807-15, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25115628

RESUMEN

We report on methodologies for use in the design of a biodegradable Mg alloy appropriate for load-bearing but temporary orthopedic implant applications. Comparative studies of Mg-5Ca and Mg-5Ca-1Zn were conducted to explore the effects of a combination of minor alloying and hot extrusion, on the alloy's mechanical properties and corrosion resistance. The extruded Mg-5Ca-1Zn exhibited high ultimate compressive strength of 385 MPa and suffered no significant structural degradation even after immersion in simulated body fluid for 30 days. Mg-5Ca-1Zn alloy showed the mechanical strength and controlled corrosion rate to be considered as an ideal candidate for biodegradable orthopedic implant material.


Asunto(s)
Aleaciones/química , Magnesio/química , Ensayo de Materiales , Fuerza Compresiva , Humanos , Procedimientos Ortopédicos , Soporte de Peso
15.
J Mech Behav Biomed Mater ; 20: 54-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23455158

RESUMEN

The effect of microstructural modification on the degradation behavior and mechanical properties of Mg-5wt%Ca alloy was investigated to tailor the load bearing orthopedic biodegradable implant material. The eutectic Mg/Mg2Ca phase precipitated in the as-cast Mg-5wt%Ca alloy generated a well-connected network of Mg2Ca, which caused drastic corrosion due to a micro galvanic cell formed by its low corrosion potential. Breaking the network structure using an extrusion process remarkably retarded the degradation rate of the extruded Mg-5wt%Ca alloy, which demonstrates that the biocompatibility and mechanical properties of Mg alloys can be enhanced through modification of their microstructure. The results from the in vitro and in vivo study suggest that the tailored microstructure by extrusion impede the deterioration in strength that arises due to the dynamic degradation behavior in body solution.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/toxicidad , Calcio/química , Calcio/toxicidad , Magnesio/química , Magnesio/toxicidad , Animales , Fuerza Compresiva , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Masculino , Ensayo de Materiales , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción
16.
ACS Appl Mater Interfaces ; 5(2): 395-403, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23249257

RESUMEN

In this study, we developed Ti-TiN composite coatings with fine lamellar structures for use as an enhanced wear-resistant layer between the bearing components of the polymer-lined acetabular cup and the metal femoral head of total hip joint replacements (THRs). A plasma spraying deposition method was used to apply the composite coatings, and the thickness of TiN layer in the composite could be controlled by varying the flow rate of N(2) atmospheric gas. The surface properties, such as roughness and hardness, were analyzed, and the friction coefficient (µ) and wear rate (k) were measured using a bovine serum wear test. A biocompatibility test was performed to evaluate the toxicity of the composite coatings. Our experimental results reveal that the friction and wear resistance of composite coatings is superior to that of the metallic implant materials, and they have a higher level of fracture toughness as compared with other ceramic coatings because of a good balance between the hardness of the TiN and the toughness of the Ti. Furthermore, these coatings possessed excellent biocompatibility. The experimental results also demonstrate that the improved wear properties can be attributed to a certain level of unavoidable porosity that is due to the rapid solidification of liquid droplets during the plasma spraying process. The pores in the coating surface play an important role as a lubricant (bovine serum) reservoir, reducing the actual contact area and friction losses.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Materiales Biocompatibles Revestidos/química , Prótesis de Cadera , Animales , Fenómenos Biomecánicos , Células HeLa , Humanos , Ensayo de Materiales , Ratones , Células 3T3 NIH , Propiedades de Superficie
17.
Sci Rep ; 3: 2367, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23917705

RESUMEN

Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants.


Asunto(s)
Implantes Absorbibles , Aleaciones/química , Materiales Biocompatibles/síntesis química , Magnesio/química , Animales , Corrosión , Conductividad Eléctrica , Análisis de Falla de Equipo , Ensayo de Materiales , Transición de Fase , Diseño de Prótesis , Propiedades de Superficie
18.
J Biomed Mater Res B Appl Biomater ; 100(6): 1535-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22689439

RESUMEN

In this study, a newly developed Mg-Ca-Zn alloy for low degradation rate and surface erosion properties was evaluated. The compressive, tensile, and fatigue strength were measured before implantation. The degradation behavior was evaluated by analyzing the microstructure and local hardness of the explanted specimen. Mean and maximum degradation rates were measured using micro CT equipment from 4-, 8-, and 16- week explants, and the alloy was shown to display surface erosion properties. Based on these characteristics, the average and minimum load bearing capacities in tension, compression, and bending modes were calculated. According to the degradation rate and references of recommended dietary intakes (RDI), the Mg-Ca-Zn alloy appears to be safe for human use.


Asunto(s)
Implantes Absorbibles , Aleaciones/química , Calcio/química , Magnesio/química , Ensayo de Materiales , Zinc/química , Humanos , Estrés Mecánico , Microtomografía por Rayos X
19.
J Biomed Mater Res B Appl Biomater ; 100(8): 2251-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915505

RESUMEN

We elucidated the in vivo corrosion mechanism of the biodegradable alloy Mg-10 wt % Ca in rat femoral condyle through transmission electron microscope observations assisted by focused ion beam technique. The alloy consists of a primary Mg phase and a three-dimensional lamellar network of Mg and Mg(2)Ca. We found that the Mg(2)Ca is rapidly corroded by interdiffusion of Ca and O, leading to a structural change from lamellar network to nanocrystalline MgO. In contrast to the fast corrosion rate of the lamellar structure, the primary Mg phase slowly changes into nanocrystalline MgO through surface corrosion by O supplied along the lamellar networks. The rapid interdiffusion induces an inhomogeneous Ca distribution and interestingly leads to the formation of a transient CaO phase, which acts as a selective leaching path for Ca. In addition, the outgoing Ca with P from body fluids forms needle-type calcium phosphates similar to hydroxyl apatite at interior and surface of the implant, providing an active biological environment for bone mineralization.


Asunto(s)
Implantes Absorbibles , Sustitutos de Huesos/química , Calcificación Fisiológica , Calcio/química , Durapatita/metabolismo , Magnesio/química , Ensayo de Materiales , Animales , Compuestos de Calcio/química , Corrosión , Óxido de Magnesio/química , Nanopartículas/química , Óxidos/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA