Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomaterials ; 29(3): 290-301, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17964646

RESUMEN

The sandwich culture of hepatocytes, between double layers of extra-cellular matrix (ECM), is a well-established in vitro model for re-establishing hepatic polarity and maintaining differentiated functions. Applications of the ECM-based sandwich culture are limited by the mass transfer barriers induced by the top gelled ECM layer, complex molecular composition of ECM with batch-to-batch variation and uncontrollable coating of the ECM double layers. We have addressed these limitations of the ECM-based sandwich culture by developing an 'ECM-free' synthetic sandwich culture, which is constructed by sandwiching a 3D hepatocyte monolayer between a glycine-arginine-glycine-aspatic acid-serine (GRGDS)-modified polyethylene terephthalate (PET) track-etched membrane (top support) and a galactosylated PET film (bottom substratum). The bioactive top support and bottom substratum in the synthetic sandwich culture substituted for the functionalities of the ECM in the ECM-based sandwich culture with further improvement in mass transfer and optimal material properties. The 3D hepatocyte monolayer in the synthetic sandwich culture exhibited a similar process of hepatic polarity formation, better cell-cell interaction and improved differentiated functions over 14-day culture compared to the hepatocytes in collagen sandwich culture. The novel 3D hepatocyte monolayer sandwich culture using bioactive synthetic materials may readily replace the ECM-based sandwich culture for liver tissue engineering applications, such as drug metabolism/toxicity testing and hepatocyte-based bioreactors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hepatocitos/citología , Animales , Adhesión Celular , Polaridad Celular , Forma de la Célula , Células Cultivadas , Colágeno , Masculino , Microscopía Electrónica de Rastreo , Tereftalatos Polietilenos , Ratas , Ratas Wistar
2.
Tissue Eng ; 13(7): 1455-68, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17518743

RESUMEN

Three-dimensional (3D) hepatocyte spheroids mimicking the structural and functional characteristics of hepatocytes in vivo were self-assembled onto a galactosylated polyethylene terephthalate (PET) substratum, and the dynamic process of spheroid formation was investigated using time-lapse confocal microscopy. Hepatocytes cultured on this galactosylated substratum formed small cell-aggregates within 12 h, which gradually merged into "island-like" clusters at approximately 1 day and spread to form prespheroid monolayer within 2 days; the prespheroid monolayer was stretched to fold into compact and larger 3D spheroids after 3 days. We compared the expressions of F-actin (cytoskeleton), phosphorylated focal adhesion kinase (p-FAK, cell-substratum interactions) and E-cadherin (cell-cell interactions) during the dynamic process of 3D hepatocyte spheroid formation with the dynamic process of 2D hepatocyte monolayer formation on collagen substratum. Hepatocytes in the prespheroid monolayer stage exhibited the strongest cell-substratum interactions of all 4 stages during spheroid formation with cell-cell interactions and F-actin distribution comparable with those of the 3D hepatocyte spheroids. The prespheroid monolayer also exhibited better hepatocyte polarity (multidrug resistance protein 2) and tight junction (zonula occludens-1) formation, more-differentiated hepatocyte functions (albumin production and cytochrome P450 1 A activity), and higher sensitivity to hepatotoxicity than the conventional 2D hepatocyte monolayer. The transient prespheroid 3D monolayer could be stabilized on a hybrid glycine-arginine-glycine-aspartic acid-serine (GRGDS)/galactose-PET substratum for up to 1 week and destabilized to form 3D spheroids in excess soluble GRGDS peptide.


Asunto(s)
Materiales Biocompatibles , Galactosa , Hepatocitos , Ingeniería de Tejidos , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , Células Cultivadas , Hepatocitos/fisiología , Masculino , Tereftalatos Polietilenos , Ratas , Ratas Wistar
3.
Biomaterials ; 27(33): 5669-80, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16904177

RESUMEN

Hepatocyte-based applications such as xenobiotics metabolism and toxicity studies usually require hepatocytes anchoring onto flat substrata that support their functional maintenance. Conventional cell culture plates coated with natural matrices or synthetic ligands allow hepatocytes to adhere tightly as two-dimensional (2D) monolayer but these tightly anchored hepatocytes rapidly lose their differentiated functions. On galactosylated substrata, hepatocytes adhere loosely; and readily form three-dimensional (3D) spheroids that can maintain high levels of cellular functions. These spheroids detach easily from the substrata and exhibit poor mass transport properties unsuitable for many applications. Here, we have developed a hybrid RGD/galactose substratum based on polyethylene terephthalate film conjugated with both RGD peptide and galactose ligand to enhance cell adhesion and functions synergistically. Primary hepatocytes adhere effectively onto the transparent hybrid substratum in 96-well plates as monolayer while exhibiting high levels of liver-specific functions, morphology and cell-cell interactions typically seen in the 3D hepatocyte spheroids. The hepatocytes cultured onto the hybrid substratum also exhibit high levels of sensitivity to a model drug acetaminophen similar to the 3D hepatocyte spheroids. The monolayer of hepatocytes exhibiting the 3D cell behaviors on this flat hybrid substratum can be useful for various applications requiring both effective mass transfer and cellular support.


Asunto(s)
Técnicas de Cultivo de Célula , Galactosa/metabolismo , Hepatocitos/metabolismo , Oligopéptidos/metabolismo , Acetaminofén/farmacología , Acrilatos/química , Actinas/metabolismo , Analgésicos no Narcóticos/farmacología , Animales , Cadherinas/metabolismo , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula/instrumentación , Forma de la Célula , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Masculino , Tereftalatos Polietilenos/química , Ratas , Ratas Wistar , Propiedades de Superficie , Adhesivos Tisulares/química
4.
Biomaterials ; 30(30): 5927-36, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19646750

RESUMEN

Drug hepatotoxicity testing requires in vitro hepatocyte culture to maintain the long-term and stable liver specific functions. We developed a drug testing platform based on laminar-flow immediate-overlay hepatocyte sandwich perfusion culture. The immediate-overlay sandwich (collagen-coated porous polymeric membrane as top overlay) protects the cells and integrity of the top collagen matrix from the impact of flow. A bioreactor was designed that allowed proper control of shear stress and mass transfer. The culture parameters such as the optimal perfusion initiation time and flow rate were systematically and mechanistically determined. The optimized system could re-establish hepatocyte polarity to support biliary excretion and to maintain other liver specific functions, such as the biotransformation enzyme activities, for two weeks that extended the usable in vitro hepatocyte-based drug testing window. When the perfusion cultured hepatocytes from days 7 or 14 were used for drug testing, the APAP-induced hepatotoxicity measurements were more sensitive and consistent over time than the static culture control, enabling further exploitations in large-scale drug testing applications.


Asunto(s)
Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Reactores Biológicos , Biotransformación , Colágeno/química , Industria Farmacéutica/métodos , Hepatocitos/citología , Masculino , Polímeros/química , Porosidad , Ratas , Ratas Wistar , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA