Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743441

RESUMEN

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Asunto(s)
Portadores de Fármacos , Hidrogeles , Insecticidas , Ivermectina , Resinas de Plantas , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Ivermectina/toxicidad , Hidrogeles/química , Hidrogeles/farmacología , Animales , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/farmacología , Resinas de Plantas/química , Portadores de Fármacos/química , Temperatura , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Mariposas Nocturnas/efectos de los fármacos , Rosaceae/química , Zinc/química , Zinc/farmacología , Resinas Acrílicas
2.
J Cell Physiol ; 237(2): 1597-1606, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34812512

RESUMEN

Tissue-specific basic helix-loop-helix (bHLH) transcription factors play an important role in cellular differentiation. We recently identified AmeloD as a tooth-specific bHLH transcription factor. However, the role of AmeloD in cellular differentiation has not been investigated. The aim of this study was to elucidate the role of AmeloD in dental epithelial cell differentiation. We found that AmeloD-knockout (AmeloD-KO) mice developed an abnormal structure and altered ion composition of enamel in molars, suggesting that AmeloD-KO mice developed enamel hypoplasia. In molars of AmeloD-KO mice, the transcription factor Sox21 encoding SRY-Box transcription factor 21 and ameloblast differentiation marker genes were significantly downregulated. Furthermore, overexpression of AmeloD in the dental epithelial cell line M3H1 upregulated Sox21 and ameloblast differentiation marker genes, indicating that AmeloD is critical for ameloblast differentiation. Our study demonstrated that AmeloD is an important transcription factor in amelogenesis for promoting ameloblast differentiation. This study provides new insights into the mechanisms of amelogenesis.


Asunto(s)
Ameloblastos , Diente , Factores Generales de Transcripción/metabolismo , Ameloblastos/metabolismo , Amelogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Ratones , Ratones Noqueados , Factores de Transcripción/metabolismo
3.
Biochem Biophys Res Commun ; 626: 100-106, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35981419

RESUMEN

Polyethylene terephthalate (PET) is one of the most abundantly produced synthetic polyesters. The vast number of waste plastics including PET has challenged the waste management sector while also posing a serious threat to the environment due to improper littering. Recently, enzymatic PET degradation has been shown to be a viable option for a circular plastic economy, which can mitigate the plastic pollution. While protein engineering studies on specific PET degradation enzymes such as leaf-branch compost cutinase (LCC), Thermobifida sp. cutinases and Ideonella sakaiensis PETase (IsPETase) have been extensively published, other homologous PET degrading enzymes have received less attention. Ple629 is a polyester hydrolase identified from marine microbial consortium having activity on PET and the bioplastic polybutylene adipate terephthalate (PBAT). In order to explore its catalytic mechanism and improve its potential for PET hydrolysis, we solved its crystal structure in complex with a PET monomer analogue, and validated its structural and mechanistic similarity to known PET hydrolases. By structural comparisons, we identified some hot spot positions described in previous research on protein engineering of PET hydrolases. We substitute these amino acid residues in Ple629, and obtained variants with improved activity and thermo-stability. The most promising variant D226A/S279A exhibited a more than 5.5-fold improved activity on PET nanoparticles than the wild-type enzyme, suggesting its potential applicability in the biotechnological plastic recycling.


Asunto(s)
Hidrolasas , Plásticos , Hidrolasas/metabolismo , Hidrólisis , Plásticos/química , Tereftalatos Polietilenos/metabolismo , Ingeniería de Proteínas
4.
Inorg Chem ; 61(45): 18044-18058, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36315939

RESUMEN

The recognition and adsorption of silver ions (Ag+) from industrial wastewater are necessary but still challenging. Herein, we constructed four Zn(II)-based coordination polymers (CPs), namely, [Zn(btap)2(NO3)2]n (1), [Zn(btap)(SO4)(H2O)3]n (2), {[Zn(btap)2(H2O)2]·(ClO4)2}n (3), and [Zn(btap)Cl2]n (4), by using 3,5-bis(triazol-1-yl)pyridine (btap) with different anionic Zn(II) salts. The crystal structures of 1-4, varying from one-dimensional beaded (1) and zigzag chain (2) to two-dimensional sql (3) and bex (4) typologies, were regulated by the coordination modes of btap and the counter-anions. The water stability, pH stability, thermostability, and luminescent properties of the CPs were investigated. The luminescence performances in a series of cations and anions were also explored. Considering the high density of chloride groups in the structure, 4 showed luminescence sensing for Ag+ [KSV = 9188.45 M-1 and a limit of detection (LOD) of 4.9 µM], as well as an excellent ability for Ag+ adsorption in aqueous solution (maximum adsorption capacity, 653.3 mg/g). Additionally, anti-interference experiments revealed that 4 had excellent recognition and adsorption capacities for Ag+ even when multiple ions coexisted. Moreover, XRD, EDS, and XPS analyses confirmed that the coordination of Ag+ with chloride groups in 4 resulted in excellent adsorption capacity and prevented ligand-to-ligand electron transfer, showing excellent detection ability. Suitable coordination sites were introduced to interact strongly with Ag+, along with detection and large adsorption capacity. Our strategy can effectively design and develop multifunctional CP-based materials, which are applicable in removal processes and environmental protection, by regulating anions in the self-assembly and introducing CP functional groups.


Asunto(s)
Polímeros , Plata , Plata/química , Polímeros/química , Ligandos , Adsorción , Cloruros , Aniones/química , Agua/química
5.
Environ Sci Technol ; 56(14): 10131-10140, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35786931

RESUMEN

Fluorescent brighteners (FBs) are extensively used as important chemical additives in multiple industrial fields worldwide. The history of the use of global FBs spans over 60 years, but knowledge on their environmental occurrence and risks remains largely unknown. Here, we screened indoor dust and hand wipes from South China for a broad suite of 17 emerging FBs using a new comprehensive analytical method. All 17 FBs were detected in the indoor environment for the first time, most of them having been rarely investigated or never reported in prior environmental studies. Ionic FBs were found to be more abundant than nonionic ones. The median total concentrations of the 17 detectable FBs reached 11,000 ng/g in indoor dust and 2640 ng/m2 in hand wipes, comparable to or higher than those of well-known indoor pollutants. Human exposure assessment indicated that hand-to-mouth contact is a significant pathway for exposure to FBs, with a comparable contribution to that of dust ingestion. Most of the newly identified FBs are predicted to have persistent, bioaccumulative, or toxic properties. Our work demonstrates that FBs are another class of highly abundant, hazardous, and ubiquitous indoor pollutants that have been overlooked for decades and points to an emerging concern.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Ambientales , Retardadores de Llama , Contaminación del Aire Interior/análisis , China , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Humanos
6.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668763

RESUMEN

A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.


Asunto(s)
Pulpa Dental/citología , Enfermedades Genéticas Congénitas/patología , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Diferenciación Celular , Humanos
7.
Biochem Biophys Res Commun ; 523(4): 841-846, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31954514

RESUMEN

Metatropic dysplasia (MD) is a congenital skeletal dysplasia characterized by severe platyspondyly and dumbbell-like long-bone deformities. These skeletal phenotypes are predominantly caused by autosomal dominant gain-of-function (GOF) mutations in transient receptor potential vanilloid 4 (TRPV4), which encodes a nonselective Ca2+-permeable cation channel. Previous studies have shown that constitutive TRPV4 channel activation leads to irregular chondrogenic proliferation and differentiation, and thus to the disorganized endochondral ossification seen in MD. Therefore, the present study investigated the role of TRPV4 in osteoblast differentiation and MD pathogenesis. Specifically, the behavior of osteoblasts differentiated from patient-derived dental pulp stem cells carrying a heterozygous single base TRPV4 mutation, c.1855C > T (p.L619F) was compared to that of osteoblasts differentiated from isogenic control cells (in which the mutation was corrected using the CRISPR/Cas9 system). The mutant osteoblasts exhibited enhanced calcification (indicated by intense Alizarin Red S staining), increased intracellular Ca2+ levels, strongly upregulated runt-related transcription factor 2 and osteocalcin expression, and increased expression and nuclear translocation of nuclear factor-activated T cell c1 (NFATc1) compared to control cells. These results suggest that the analyzed TRPV4 GOF mutation disrupts osteoblastic differentiation and induces MD-associated disorganized endochondral ossification by increasing Ca2+/NFATc1 pathway activity. Thus, inhibiting the NFATc1 pathway may be a promising potential therapeutic strategy to attenuate skeletal deformities in MD.


Asunto(s)
Diferenciación Celular , Pulpa Dental/patología , Enanismo/genética , Mutación con Ganancia de Función/genética , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocondrodisplasias/genética , Células Madre/metabolismo , Canales Catiónicos TRPV/genética , Adolescente , Calcio/metabolismo , Humanos , Espacio Intracelular/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal
8.
Biochem Biophys Res Commun ; 516(1): 127-132, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31202461

RESUMEN

Orofacial clefts (OFCs) are among the most common congenital craniofacial malformations, including cleft lip with or without cleft palate as the core symptoms. Developmental or functional defects in neural crest cells (NCCs) that contribute to craniofacial morphogenesis are involved in OFC development. Previous studies have suggested that oxidative stress in NCCs is involved in the development of OFCs, suggesting that the anti-oxidative activity of folic acid (FA) could have protective effects. However, studies of human-derived NCCs are limited, as these cells are predominantly active during the embryonic stage. In this study, the effects of oxidative stress and FA were evaluated in human OFCs. In particular, NCC-derived stem cells from human exfoliated deciduous teeth (SHEDs) were obtained from 3 children with non-syndromic cleft lip with cleft palate (CLPs) and from 3 healthy children (CTRLs). Mitochondrial reactive oxygen species (ROS) levels were significantly higher in CLPs than in CTRLs and were associated with lower mRNA expression levels of superoxide dismutase 1 (SOD1) and decreased cell mobility. In addition, significantly greater vulnerability to pyocyanin-induced ROS, mimicking exogenous ROS, was observed in CLPs than in CTRLs. These vulnerabilities to endogenous and exogenous ROS in CLPs were significantly improved by FA. These results indicated that the transcriptional dysregulation of SOD1 in NCCs is an oxidative stress-related pathological factor in OFCs, providing novel evidence for the benefits of perinatal anti-oxidant supplementation, including FA, for the management of these common deformities.


Asunto(s)
Antioxidantes/uso terapéutico , Labio Leporino/tratamiento farmacológico , Fisura del Paladar/tratamiento farmacológico , Ácido Fólico/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Diente Primario/efectos de los fármacos , Células Cultivadas , Niño , Labio Leporino/metabolismo , Fisura del Paladar/metabolismo , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Humanos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Diente Primario/citología , Diente Primario/metabolismo , Complejo Vitamínico B/uso terapéutico
9.
Biochem Biophys Res Commun ; 508(3): 850-856, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528238

RESUMEN

Enzymatic antioxidant systems, mainly involving mitochondria, are critical for minimizing the harmful effects of reactive oxygen species, and these systems are enhanced by interactions with nonenzymatic antioxidant nutrients. Because fetal growth requires extensive mitochondrial respiration, pregnant women and fetuses are at high risk of exposure to excessive reactive oxygen species. The enhancement of the antioxidant system, e.g., by nutritional management, is therefore critical for both the mother and fetus. Folic acid supplementation prevents homocysteine accumulation and epigenetic dysregulation associated with one-carbon metabolism. However, few studies have examined the antioxidant effects of folic acid for healthy pregnancy outcomes. The purpose of this study was to elucidate the association between the antioxidant effect of folic acid and mitochondria in undifferentiated cells during fetal growth. Neural crest-derived dental pulp stem cells of human exfoliated deciduous teeth were used as a model of undifferentiated cells in the fetus. Pyocyanin induced excessive reactive oxygen species, resulting in a decrease in cell growth and migration accompanied by mitochondrial fragmentation and inactivation in dental pulp stem cells. This damage was significantly improved by folic acid, along with decreased mitochondrial reactive oxygen species, PGC-1α upregulation, DRP1 downregulation, mitochondrial elongation, and increased ATP production. Folic acid may protect undifferentiated cells from oxidative damage by targeting mitochondrial activation. These results provide evidence for a new benefit of folic acid in pregnant women and fetuses.


Asunto(s)
Antioxidantes/farmacología , Pulpa Dental/citología , Ácido Fólico/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Diente Primario/citología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Niño , Humanos , Piocianina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Células Madre/metabolismo
10.
BMC Neurol ; 18(1): 132, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30170556

RESUMEN

BACKGROUND: Down syndrome (DS) is a common developmental disorder resulting from the presence of an additional copy of chromosome 21. Abnormalities in dopamine signaling are suggested to be involved in cognitive dysfunction, one of the symptoms of DS, but the pathophysiological mechanism has not been fully elucidated at the cellular level. Stem cells from human exfoliated deciduous teeth (SHED) can be prepared from the dental pulp of primary teeth. Importantly, SHED can be collected noninvasively, have multipotency, and differentiate into dopaminergic neurons (DN). Therefore, we examined dopamine signaling in DS at the cellular level by isolating SHED from a patient with DS, differentiating the cells into DN, and examining development and function of DN. METHODS: Here, SHED were prepared from a normal participant (Ctrl-SHED) and a patient with DS (DS-SHED). Initial experiments were performed to confirm the morphological, chromosomal, and stem cell characteristics of both SHED populations. Next, Ctrl-SHED and DS-SHED were differentiated into DN and morphological analysis of DN was examined by immunostaining. Functional analysis of DN was performed by measuring extracellular dopamine levels under basal and glutamate-stimulated conditions. In addition, expression of molecules involved in dopamine homeostasis was examined by quantitative real-time polymerase chain reaction and immunostaining. Statistical analysis was performed using two-tailed Student's t-tests. RESULTS: Compared with Ctrl-SHED, DS-SHED showed decreased expression of nestin, a neural stem-cell marker. Further, DS-SHED differentiated into DN (DS-DN) exhibiting decreased neurite outgrowth and branching compared with Ctrl-DN. In addition, DS-DN dopamine secretion was lower than Ctrl-DN dopamine secretion. Moreover, aberrant expression of molecules involved in dopaminergic homeostasis was observed in DS-DN. CONCLUSIONS: Our results suggest that there was developmental abnormality and DN malfunction in the DS-SHED donor in this study. In the future, to clarify the detailed mechanism of dopamine-signal abnormality due to DN developmental and functional abnormalities in DS, it is necessary to increase the number of patients for analysis. Non-invasively harvested SHED may be very useful in the analysis of DS pathology.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatología , Diferenciación Celular , Células Cultivadas , Pulpa Dental/citología , Dopamina/metabolismo , Humanos , Células Madre/citología , Células Madre/metabolismo , Diente Primario/citología
11.
Cell Struct Funct ; 42(2): 105-116, 2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28701634

RESUMEN

Stem cells from human exfoliated deciduous teeth (SHED) are isolated from the dental pulp tissue of primary teeth and can differentiate into neuronal cells. Although SHED are a desirable type of stem cells for transplantation therapy and for the study of neurological diseases, a large part of the neuronal differentiation machinery of SHED remains unclear. Recent studies have suggested that mitochondrial activity is involved in the differentiation of stem cells. In the present work, we investigated the neuronal differentiation machinery of SHED by focusing on mitochondrial activity. During neuronal differentiation of SHED, we observed increased mitochondrial membrane potential, increased mitochondrial DNA, and elongated mitochondria. Furthermore, to examine the demand for mitochondrial activity in neuronal differentiation, we then differentiated SHED into neuronal cells in the presence of rotenone, an inhibitor of mitochondrial respiratory chain complex I, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a mitochondrial uncoupler, and found that neuronal differentiation was inhibited by treatment with rotenone and CCCP. These results indicated that increased mitochondrial activity was crucial for the neuronal differentiation of SHED.Key words: mitochondria, differentiation, stem cells, dental pulp, exfoliated deciduous teeth.


Asunto(s)
Diferenciación Celular , Mitocondrias/metabolismo , Células Madre/citología , Exfoliación Dental/metabolismo , Diente Primario/citología , Preescolar , Humanos , Neuronas/citología , Neuronas/metabolismo , Células Madre/metabolismo , Diente Primario/metabolismo
12.
Biochem Biophys Res Commun ; 493(1): 207-212, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28899781

RESUMEN

Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases.


Asunto(s)
Calcio/metabolismo , Enfermedad de Leigh/fisiopatología , Mitocondrias/patología , Osteoblastos/patología , Células Madre/metabolismo , Células Madre/patología , Diente Primario/fisiopatología , Calcificación Fisiológica , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Enfermedad de Leigh/patología , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Osteogénesis , Diente Primario/patología
13.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952675

RESUMEN

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Prótesis e Implantes , Aleaciones/farmacología , Aleaciones/química , Ratas , Titanio/química , Titanio/farmacología , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Cobre/química , Cobre/farmacología , Masculino , Microtomografía por Rayos X , Línea Celular , Nanopartículas del Metal/química
14.
Bioresour Technol ; 370: 128570, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36596366

RESUMEN

A novel ternary deep eutectic solvent (DES), consisted of choline chloride, oxalic acid and ethylene glycol, was developed as a green, low-cost and recyclable pretreatment system for multi-stage utilization of Eucommia ulmoides seed shells. Under optimum conditions, 79.7 % hemicellulose and 65.6 % lignin were quickly removed while 84.0 % cellulose was retained. After DES pretreatment, the yield and purity of gutta-percha achieved 85.1 mg/g and 96.2 %, which increased 1.4 and 1.8 folds higher than that of un-treatment ones. Meanwhile, 69.1 % enzymatic digestibility of cellulose was obtained, that was 2.3 folds higher than that of raw substrates. Moreover, 53.6 % low-condensation lignin with aromatic structures and valuable aryl-ether linkages was well collected. Importantly, the DES that has been recycled five runs can still remove 73.9 % hemicellulose and 58.0 % lignin. Overall, the DES was determined to efficiently promote the separation and conversion of high-quality gutta-percha, value-added lignin and high-yield glucose from Eucommia ulmoides seed shells.


Asunto(s)
Eucommiaceae , Lignina , Lignina/química , Eucommiaceae/química , Gutapercha , Disolventes Eutécticos Profundos , Monosacáridos , Solventes/química , Hidrólisis , Celulosa/química , Semillas , Biomasa
15.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 2015-2026, 2023 May 25.
Artículo en Zh | MEDLINE | ID: mdl-37212228

RESUMEN

PET (polyethylene terephthalate) is one of the most important petrochemicals that is widely used in mineral water bottles, food and beverage packaging and textile industry. Because of its stability under environmental conditions, the massive amount of PET wastes caused serious environmental pollution. The use of enzymes to depolymerize PET wastes and upcycling is one of the important directions for plastics pollution control, among which the key is the depolymerization efficiency of PET by PET hydrolase. BHET (bis(hydroxyethyl) terephthalate) is the main intermediate of PET hydrolysis, its accumulation can hinder the degradation efficiency of PET hydrolase significantly, and the synergistic use of PET hydrolase and BHET hydrolase can improve the PET hydrolysis efficiency. In this study, a dienolactone hydrolase from Hydrogenobacter thermophilus which can degrade BHET (HtBHETase) was identified. After heterologous expression in Escherichia coli and purification, the enzymatic properties of HtBHETase were studied. HtBHETase shows higher catalytic activity towards esters with short carbon chains such as p-nitrophenol acetate. The optimal pH and temperature of the reaction with BHET were 5.0 and 55 ℃, respectively. HtBHETase exhibited excellent thermostability, and retained over 80% residual activity after treatment at 80 ℃ for 1 hour. These results indicate that HtBHETase has potential in biological PET depolymerization, which may facilitate the enzymatic degradation of PET.


Asunto(s)
Bacterias , Hidrolasas , Hidrolasas/metabolismo , Bacterias/metabolismo , Hidrólisis , Tereftalatos Polietilenos/metabolismo
16.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 2040-2052, 2023 May 25.
Artículo en Zh | MEDLINE | ID: mdl-37212230

RESUMEN

Petrochemical-derived polyester plastics such as polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) have been widely used. However, the difficulty to be degraded in nature (PET) or the long biodegradation cycle (PBAT) resulted in serious environmental pollution. In this connection, treating these plastic wastes properly becomes one of the challenges of environment protection. From the perspective of circular economy, biologically depolymerizing the waste of polyester plastics and reusing the depolymerized products is one of the most promising directions. Recent years have seen many reports on polyester plastics degrading organisms and enzymes. Highly efficient degrading enzymes, especially those with better thermal stability, will be conducive to their application. The mesophilic plastic-degrading enzyme Ple629 from the marine microbial metagenome is capable of degrading PET and PBAT at room temperature, but it cannot tolerate high temperature, which hampers its potential application. On the basis of the three-dimensional structure of Ple629 obtained from our previous study, we identified some sites which might be important for its thermal stability by structural comparison and mutation energy analysis. We carried out transformation design, and performed expression, purification and thermal stability determination of the mutants. The melting temperature (Tm) values of mutants V80C and D226C/S281C were increased by 5.2 ℃ and 6.9 ℃, respectively, and the activity of mutant D226C/S281C was also increased by 1.5 times compared with that of the wild-type enzyme. These results provide useful information for future engineering and application of Ple629 in polyester plastic degradation.


Asunto(s)
Plásticos , Tereftalatos Polietilenos , Plásticos/metabolismo , Tereftalatos Polietilenos/metabolismo , Biodegradación Ambiental , Metagenoma
17.
J Colloid Interface Sci ; 622: 50-61, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35489101

RESUMEN

Photocatalytic reduction of Cr(VI) in water environments attracts more attention; however, the mechanisms involved in this process have not been clearly elucidated yet. In this study, the photocatalytic reduction of Cr(VI) by polydopamine modified Bi2.15WO6 (PDA/BWO) under visible light was conducted. Kinetics results show that PDA apparently accelerates the reduction of Cr(VI). The quasi-first-order kinetic constant of Cr(VI) reduction by 5PDA/BWO is 70.0 times that of the original BWO, reaching 0.070 min-1. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman analyses confirm the formation of ligand-to-metal charge transfer (LMCT) complex [Bi(III)OC] between PDA and BWO. The formed Bi(III)OC complex enhances visible light response and narrows the bandgap of PDA/BWO. The photoelectrochemical and photoluminescent characterization further reveals that the formed Bi(III)OC complex inhibits the recombination of carriers, thus enhancing the photocatalytic reactivity of PDA/BWO. Electrons, are derived from three paths, including dye sensitization, LMCT and bandgap excitation, contribute to Cr(VI) reduction by PDA/BWO. This study provides new insights on the paths of Cr(VI) reduction by PDA/BWO under visible light.


Asunto(s)
Cromo , Cromo/química , Indoles , Ligandos , Oxidación-Reducción , Polímeros
18.
FASEB Bioadv ; 4(7): 454-467, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35812076

RESUMEN

Down syndrome (DS) is one of the common genetic disorders caused by the trisomy of human chromosome 21 (HSA21). Mitochondrial dysfunction and redox imbalance play important roles in DS pathology, and altered dopaminergic regulation has been demonstrated in the brain of individuals with DS. However, the pathological association of these elements is not yet fully understood. In this study, we analyzed dopaminergic neurons (DNs) differentiated from deciduous teeth-derived stem cells of children with DS or healthy control children. As previously observed in the analysis of a single case of DS, compared to controls, patient-derived DNs (DS-DNs) displayed shorter neurite outgrowth and fewer branches, as well as downregulated vesicular monoamine transporter 2 and upregulated dopamine transporter 1, both of which are key regulators of dopamine homeostasis in DNs. In agreement with these expression profiles, DS-DNs accumulated dopamine intracellularly and had increased levels of cellular and mitochondrial reactive oxygen species (ROS). DS-DNs showed downregulation of non-canonical Notch ligand, delta-like 1, which may contribute to dopamine accumulation and increased ROS levels through DAT1 upregulation. Furthermore, DS-DNs showed mitochondrial dysfunction in consistent with lower expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and upregulation of a HSA21-encoded negative regulator of PGC-1α, nuclear receptor-interacting protein 1. These results suggest that dysregulated dopamine homeostasis may participate in oxidative stress and mitochondrial dysfunction of the dopaminergic system in DS.

19.
Dent Mater J ; 41(3): 346-352, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35321974

RESUMEN

The aim was to obtain bone repair materials with sustained release of minocycline and evaluate the effect in periodontal bone defect repair. Two complex material, hydroxyapatite/chitosan (HA/CS) and minocycline-hydroxyapatite/chitosan (Mino-HA/CS), were prepared by the co-precipitation method. The physical and chemical property, cytotoxicity, release of minocycline and the bacteriostasis examination of the materials were evaluated, they were applied to the rabbit model of mandible bone defect to evaluate their effects on the regeneration of periodontal bone defect. After minocycline was added to HA/CS, the setting time of the material was prolonged, the compressive strength was reduced and the pore size and porosity were increased significantly. The pH value did not change obviously and stayed in the neutral range. Mino-HA/CS could promote the growth of osteoblasts effectively compared with control medium. In vivo, Mino-HA/CS material showed better effect of promoting periodontal bone formation.


Asunto(s)
Quitosano , Durapatita , Animales , Regeneración Ósea , Quitosano/química , Quitosano/farmacología , Preparaciones de Acción Retardada/farmacología , Durapatita/química , Durapatita/farmacología , Minociclina/farmacología , Osteogénesis , Conejos , Andamios del Tejido/química
20.
Chemosphere ; 302: 134782, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35523295

RESUMEN

Micro-nano bubbles (MNBs) play important roles in the reduction of membrane fouling during membrane separation; however, such improvements are always attributed to the reduced concentration polarization on the surface of membranes and little attention has been paid on the variations of physicochemical properties of the feed caused by MNBs. In this study, the separation efficiencies of the feed containing humic acid (HA), bovine serum albumin (BSA), sodium alginate (SA) or dyes can be improved by MNBs during ultrafiltration, and the normalized fluxes can be maximally increased to 139% and 127% in the dead-end and cross-flow modes, respectively in the treatment of HA solution. We further reveal that the decreased apparent viscosity of the feed in the presence of MNBs is the key factor that enhances the normalized flux during ultrafiltration. This study gives new insight on the importance of MNBs in membrane separation and provides valuable clues for other chemical processes.


Asunto(s)
Ultrafiltración , Purificación del Agua , Sustancias Húmicas , Membranas Artificiales , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA