Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 252: 126533, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634784

RESUMEN

Recently, materials with complicated environmentally-sensitive abilities, high stretchability and excellent conductive sensitivity are interesting actuators in future applications. Herein, we fabricated a versatile and facile polyvinyl alcohol/polyacrylic acid/dialdehyde cellulose nanofibrils-Fe3+ hydrogel integrated with programmable dual-shape memory properties, high mechanical strength, good recoverability, and heat-induced self-healing capability. Benefiting from the synergistic effect of hydrogen bonds and dual metal coordination bonds of cellulose-based dialdehyde and carboxyl with Fe3+and then heating-freeze-thawing cycle treatment, the obtained hydrogel exhibited dual shape memory abilities, high tensile strain (up to 600 %), good self-recovery, and anti-fatigue properties. Moreover, the resultant hydrogel sensors showed revealed high strain sensitivity (gauge factor = 2.95) and satisfactory electrochemical performance; and such hydrogel-based sensor could be used as ionic skin to detect various human motions in real-time and barrier-free communication in the aquatic environment. The composite hydrogel with superior and versatile performances reported in this study could offer a great promise to be applied under extreme conditions as multifunctional sensors.


Asunto(s)
Aldehídos , Hidrogeles , Humanos , Piel , Celulosa , Comunicación , Conductividad Eléctrica , Iones
2.
Carbohydr Polym ; 254: 117033, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357838

RESUMEN

Electromagnetic-interference (EMI) shielding materials that are green, lightweight, and with high mechanical properties need to be urgently developed to address increasingly severe radiation pollution. However, limited EMI shielding materials are successfully used in practical applications, due to the intensive energy consumption or the absence of sufficient strength. Herein, an environmentally friendly and effective method was proved to fabricate wood-based composites with high mechanical robustness and EMI shielding performance by a MXene/cellulose scaffold assembly strategy. The lignocellulose composites with a millimeter-thick mimic the "mortar-brick" layered structure, resulting in excellent mechanical properties that can achieve the compressive strength of 288 MPa and EMI shielding effectiveness of 39.3 dB. This "top-down" method provides an alternative for the efficient production of robust and sustainable EMI shielding materials that can be used in the fields of structural materials for next-generation communications and electronic devices.


Asunto(s)
Celulosa/química , Protección Radiológica/instrumentación , Madera/química , Celulosa/ultraestructura , Fuerza Compresiva , Módulo de Elasticidad , Conductividad Eléctrica , Campos Electromagnéticos , Lignina/química , Lignina/ultraestructura , Ciencia de los Materiales , Ensayo de Materiales , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Madera/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA