Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mater Chem B ; 12(4): 842-871, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38173410

RESUMEN

Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Materiales Biocompatibles/uso terapéutico , Regeneración Ósea , Huesos
2.
Bioresour Technol ; 381: 129109, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169202

RESUMEN

The study aims to clarify the driving factors of lignocellulose degrading enzyme genes abundance during rice straw composting. Lignocellulose degrading strains b4 (Bacillus subtilis), z1 (Aspergillus fumigatus) were inoculated into pure culture, respectively. Meanwhile, three rice straw composting groups were set up, named CK (control), B4 (inoculating b4) and Z1 (inoculating z1). Results confirmed the composition of functional genes related to lignocellulose metabolism for strains. Lignocellulose degrading enzyme genes abundance was up-regulated by inoculation, which promoted the decomposition of lignocellulose. Modular microorganisms, such as Actinobacteria, Proteobacteria, Ascomycetes and Basidiomycetes, were identified as driving factors that affected lignocellulose degrading enzyme genes abundance. pH, organic matter and soluble sugar content affected lignocellulose degrading enzyme genes abundance by affecting modular microorganisms. In addition, a potential priming effect was put forward based on the driving factors. This study provided theoretical guidance for regulating the abundance of lignocellulose degrading enzyme genes to promote lignocellulose degradation.


Asunto(s)
Compostaje , Microbiota , Oryza , Suelo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Bacillus subtilis/metabolismo , Estiércol/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA