Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 57(7): 2804-2812, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36749610

RESUMEN

Nanoplastics (NPs, <1 µm) are of great concern worldwide because of their high potential risk toward organisms in aquatic systems, while very little work has been focused on their tissue-specific toxicokinetics due to the limitations of NP quantification for such a purpose. In this study, NPs with two different sizes (86 and 185 nm) were doped with palladium (Pd) to accurately determine the uptake and depuration kinetics in various tissues (intestine, stomach, liver, gill, and muscle) of tilapia (Oreochromis niloticus) in water, and subsequently, the corresponding toxic effects in the intestine were explored. Our results revealed uptake and depuration constants of 2.70-378 L kg-1 day-1 and 0.138-0.407 day-1 for NPs in tilapia for the first time, and the NPs in tissues were found to be highly dependent on the particle size. The intestine exhibited the greatest relative accumulation of both sizes of NPs; the smaller NPs caused more severe damage than the larger NPs to the intestinal mucosal layer, while the larger NPs induced a greater impact on microbiota composition. The findings of this work explicitly indicate the size-dependent toxicokinetics and intestinal toxicity pathways of NPs, providing new insights into the ecological effects of NPs on aquatic organisms.


Asunto(s)
Cíclidos , Tilapia , Contaminantes Químicos del Agua , Animales , Tilapia/metabolismo , Cíclidos/metabolismo , Microplásticos , Intestinos , Hígado/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
J Hazard Mater ; 467: 133734, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38330647

RESUMEN

Microplastics and antibiotics not only pollute aquatic environments and threaten human health, but are also tricky to remove. Microplastics adsorb antibiotics, and, before being released into the natural environment, most microplastics pass through some wastewater treatment and/or disinfection (such as chlorination) facilities. It is therefore necessary to understand how these treatment processes may affect or alter microplastics' properties, particularly their ability to adsorb antibiotics, and whether or not the two, when bound together, may present exacerbated harm to the environment. This study used both laboratory tests and molecular dynamics simulation to investigate the mechanism through which chlorinated microplastics (specifically polystyrene) adsorb the antibiotic tetracycline, and showed that chlorination gave the polystyrene a larger interaction area (> 21%) and more free energy (> 14%) to adsorb tetracycline. Van der Waals (vdW) forces played a more dominant role than electrostatics in facilitating tetracycline's adsorption. Moreover, a density functional theory analysis demonstrated that the vdW potentials of the microplastics decreased as more and more hydrogen atoms became replaced by chlorine, suggesting a facilitation of the adsorption of polycyclic antibiotic molecules. The experimental results confirmed the simulation's prediction that a higher degree of chlorination significantly increases the polystyrene's adsorption capacity, whereas pH and salinity had almost no effect on the adsorption. This study demonstrates that disinfection elevates the risk of antibiotics adhering to and accumulating on the surface of microplastics.


Asunto(s)
Antibacterianos , Halogenación , Humanos , Microplásticos , Plásticos , Adsorción , Poliestirenos , Tetraciclina
3.
Environ Pollut ; 323: 121254, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773686

RESUMEN

The large number of microplastics (MPs) that appear in the environment has drawn much attention. Few studies, however, have examined the transformation of MPs in water treatment processes and their effects on environmental pollutants. In this study, the alteration of the physicochemical characteristics of polyethylene and thermoplastic polyurethane upon chlorination, as well as the influence of this alteration on contaminants, were investigated. The findings indicated that microplastics underwent significant morphology and O-functional groups changes during chlorination. It is noteworthy that the mechanisms controlling the chlorination treatment of the two MPs are clearly different. The results of aggregation and adsorption experiments showed that the chlorination treatment enhanced the aggregation ability of the MPs in brine and their interaction with Cr(VI). The present discoveries further suggested that water treatment could alter the migration capacity of microplastics and the distribution of contaminants in the aqueous environment by altering the adsorption of microplastics to the contaminants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Cromo , Plásticos , Adsorción , Halogenación , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 858(Pt 3): 160107, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370773

RESUMEN

Activated sludge (AS) offers great potential for resource recovery considering its high organic and nutrient content. However, low recovery efficiency and high costs are directing the focus toward the high-valuable resource recovery. This study extracted 71.5 ± 5.9 mg/g VSS of alginate-like exopolysaccharides from AS (ALE/AS) and applied it to mortar as a novel biopolymer agent for crack self-healing. With a mortar crack of 120 µm, addition of 0.5 wt% ALE/AS yielded a high crack closure ratio of 86.5 % within 28 days. In comparison to commercial healing agents, marginal flexural strength reduction with ALE/AS addition (17.9 % vs 30.2-50.5 %) was demonstrated. The abundance of COO- group in GG blocks of ALE/AS resulted in a higher cross-link capacity with Ca2+, while the reduction of hydrophilic residues (e.g., COO- and OH) after complexation engendered a lower swelling capacity, which facilitated self-healing and flexural strength maintenance. Molecular dynamics (MD) revealed that lower Ca2+ diffusivity, arising from the stronger electrostatic interactions between the COO- groups and Ca2+, resulted in a high Ca2+ concentration around the cracks, leading to CaCO3 deposition and healed cracks. The outcomes of this study provided light on ALE-based mortar crack healing and presented a possibility for multi-level AS resource recovery.


Asunto(s)
Biopolímeros , Polisacáridos , Aguas del Alcantarillado , Polisacáridos/química , Biopolímeros/química
5.
Chemosphere ; 327: 138488, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963574

RESUMEN

Microplastics (MPs) are substances that pose a risk to both human life and the environment. Their types and production are increasing year on year, and their potential to cause environmental pollution is a worldwide concern. Conventional water treatment processes, particularly coagulation and sedimentation, are not effective at removing all MPs. It is therefore important to assess the morphological changes in the MPs, i.e., the thermoplastic polyurethane (TPU) and polyethylene (PE), during ozonation and the dissolved organic carbon leaching as well as chloroform formation in the subsequent chlorination. The results show that the appearance and surface chemistry of the MPs changed during the ozonation process, most notably for TPU. The trichloromethane (CHCl3) generation during chlorination was 0.168 and 0.152 µmol/L for TPU and PE, respectively, and the ozone pretreatment significantly increased the CHCl3 yield of TPU, while it had a weak effect on PE. Additional disinfection byproducts (DBPs), including CHCl2Br, CHClBr2, and CHBr3, were produced in the presence of bromide ions in the water column, and the total amount of DBPs produced by PE, PE-O, TPU, and TPU-O was significantly increased to 0.787, 0.814, 0.931, and 1.391 µmol/L, respectively. The study provides useful information for the environmental risk assessment of two representative MPs, i.e., TPU and MPs, in disinfection procedures for drinking water.


Asunto(s)
Desinfectantes , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfección/métodos , Microplásticos , Plásticos , Halogenación , Purificación del Agua/métodos , Cloroformo , Poliuretanos , Ozono/química , Contaminantes Químicos del Agua/análisis , Desinfectantes/química
6.
Sci Total Environ ; 813: 151871, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34826489

RESUMEN

The aerobic granular sludge (AGS) effectively mitigates the membrane fouling of a membrane bioreactor. However, the role and effects of the concentration polarization (CP), induced during the AGS filtration process on the membrane fouling and membrane cleaning efficiency, remain unclear. In the present study, the AGS resulted in a higher CP proportion (>50%) and a lower CP resistance (<3 × 1012 m-1), compared with the flocculent sludge, owing to the synergistic effect of the hydraulic shear and AGS scouring development, which improved the AGS in suspension and also minimized its deposition on the membrane. High-frequency interactions (contact and collision) between the AGS and membrane enhanced the CP resistance by returning more granular sludge from the cake layer to the CP, which proportionally increased the fouling resistance. Based on the correlation of CP and fouling resistance, the CP resistance was divided into 3 categories: high-intensity (2.76 × 1012 m-1), medium-intensity (1.74 × 1012 m-1), and low-intensity (0.62 × 1012 m-1). At the high-intensity CP, most membrane pores were "sealed" (complete pore blocking [R2 > 0.9015]) and the pore blocking condition was the most serious (K-value = 0.0622 s-1), while the membrane surface became denser and rougher. As a result, the permeability loss after the long-term filtration increased. In the chemical cleaning investigation, the alkaline detergents yielded an enhanced membrane cleaning efficiency to recover permeability. By reducing the CP, the membrane cleaning efficiency was marginally improved. The present study reveals the quantitative role of CP and offers insights into the mechanisms that govern membrane fouling in a membrane bioreactor.


Asunto(s)
Fenómenos Fisiológicos , Aguas del Alcantarillado , Reactores Biológicos , Filtración , Membranas Artificiales
7.
Chemosphere ; 303(Pt 2): 135102, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35623421

RESUMEN

With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 µg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 µg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Microplásticos , Plásticos , Polipropilenos , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 849: 157800, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35934036

RESUMEN

Considering the large volumes of treated water and incomplete elimination of pollutants, wastewater treatment plants (WWTPs) remain a considerable source of microplastics (MPs). Chlorine, the most frequently used disinfectant in WWTPs, has a strong oxidizing impact on MPs. However, little is documented, to date, about the impact of chlorination on the transformation of MPs and the subsequent environmental behaviors of the chlorinated MPs when released into the aquatic environment. This study explored the response of the physicochemical properties of specific thermoplastics, namely polyurethane (TPU) MPs and polystyrene (PS) MPs, to chlorination and their emerging pollutant [tetracycline (TC)] adsorption behavior in aqueous solution. The results indicated that the O/C ratio of the MP surface did not significantly change, and that there were increases in the O-containing functional groups of the TPU and PS MPs, after chlorination. The surface area of the chlorinated TPU MPs increased by 45 %, and that of the chlorinated PS increased by 21 %, compared with the pristine ones, which contributed to the TC adsorption. The adsorption isotherm fitting parameters suggested that the chlorinated TPU fitted the multilayer adsorption, and the chlorinated PS was inclined to the monolayer adsorption. The relative abundance of the O-containing functional groups, on the TPU surface, led to the release of CHCl3 molecules, and the clear surface irregularities and fissures occurred after chlorine treatment. No fissures were found on the surface of the chlorinated PS MPs. The hydrophobicity and electrostatic adsorption were proved to be the major impacts on the TC adsorption of the chlorinated MPs, and the subsequently formed hydrogen bonds led to the stronger adsorption capacity of the chlorinated TPU than the chlorinated PS MPs.


Asunto(s)
Desinfectantes , Contaminantes Ambientales , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Cloro , Halogenación , Microplásticos , Plásticos , Poliestirenos , Poliuretanos , Tetraciclina , Agua , Contaminantes Químicos del Agua/análisis
9.
Bioresour Technol ; 358: 127396, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35640814

RESUMEN

High-strength industrial wastewater containing approximately 2000 mg/L of N, N-dimethylformamide (DMF) was treated by the anaerobic membrane bioreactor (AnMBR) during a long-term operation with the concept of carbon neutrality in this study. Bio-methane was recovered as bio-energy or bio-resource from DMF-containing wastewater along with the CO2 emission reduction. The results are clear evidence of the feasibility of carbon-neutral treatment of DMF-containing wastewater by the AnMBR. With an effective degradation under the organic loading rate of 6.53 COD kg/m3/d at the HRT of 12 h, the AnMBR completely covered the energy consumption during long-term operation by saving electricity of 4.16 kWh/m3 compared with the conventional activated sludge process. The CO2 emission of the AnMBR was just 1.06 kg/m3, remarkably reducing 1.45 kg/m3 of CO2. The treatment of DMF-containing wastewater by the AnMBR perfectly realized the goal of carbon neutrality, and was considered as an alternative to the conventional activated sludge process.


Asunto(s)
Dimetilformamida , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Carbono , Dióxido de Carbono , Dimetilformamida/metabolismo , Membranas Artificiales , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis
10.
Water Res ; 188: 116518, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137525

RESUMEN

Aerobic granular sludge (AGS) has been proven to have a low fouling potential in membrane bioreactor (MBR). Nevertheless, AGS scouring effect on mitigating membrane fouling remains poorly investigated. The main objective of this study is to examine AGS-MBR performance, to reveal the AGS scouring mechanism and quantify its contribution rate to membrane fouling mitigation, from the views of theory and experiment. Above all, AGS-MBR exhibited a low fouling rate ((transmembrane pressure (TMP) kept below 20 kPa) without membrane cleaning and a higher removal of organics and nutrients than conventional MBR during 80 days' sludge granulation process. Then, flocculent sludge (FS) with various AGS ratios was applied to simulate the sludge granulation phase. When AGS ratio increased from 0% to 100%, the permeate flux gradually elevated from 40.0 L m-2h-1 to 92.9 L m-2h-1, and fouling resistance decreased from 9.0 × 10-12m-1 to 3.9 × 10-12m-1 benefiting from the loose structure and high porosity of AGS fouling layer. Meanwhile, the scouring effect produced by AGS on the membrane fouling mitigation was investigated. Based on the momentum conservation, a new hydrodynamic model was developed to explain the scouring mechanism of AGS. The scouring stress, proportional to the total amount of AGS depositing on the membrane surface, effectively reinforced the collision between AGS and FS, and reduced their deposition on the membrane surface by friction with the membrane; thus it was further conducive to membrane fouling mitigation. Moreover, a novel contribution quantification model was proposed for analyzing the contribution rate of AGS scouring effect to mitigate membrane fouling. AGS scouring possessed a significant contribution rate (39.9%) for fouling mitigation, compared with AGS structure (50.3%) and hydraulic stress (9.7%). In final, this study provides an in-depth understanding to mitigate the MBR membrane fouling by the unique advantages of sludge granulation.


Asunto(s)
Hidrodinámica , Aguas del Alcantarillado , Reactores Biológicos , Membranas , Membranas Artificiales , Aguas Residuales
11.
Environ Technol ; 42(21): 3379-3389, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32065050

RESUMEN

The forward osmotic membrane bioreactor (FOMBR) is an emerging innovative technology with broad application prospects in the field of wastewater treatment. Its application is severely limited by concentration polarization, salinity accumulation, and evident water flux decline. Gradual salinity accumulation to a maximum conductivity of 19.7 mS cm-1 under continuous flow operation suppressed the activities of sludge and biodegradation efficiencies. The employment of the regulation of intermittent supernatant discharge was first investigated to alleviate inhibition caused via accumulated salinity in the bioreactor, and bilateral influent was examined with respect to the performance of the FOMBR. The preferable condition to be applied was FO orientation mode (i.e. active layer facing feed) with spacers added to the surface. Given the decreased salt concentration with 2 L of the supernatant removed per day, the water flux declined more slowly and sludge activities were recovered. When compared to the performance without discharging supernatant, the strategy of controlling salinity could improve the removal efficiencies of NH4+-N, PO43--P, and total organic carbon (TOC) by 15.1, 14.3, and 2.3%, respectively. Additionally, the sludge in the intermittent supernatant discharge bioreactor exhibited better sludge property, larger sludge particle size, and recovered sludge activities with the mixed liquid suspended solids (MLSS) stable at around 4.90 g L-1. Therefore, regulation of intermittent salt discharge and controlling the salinity concentration in bioreactor can be employed as an effective method to deal with concentration polarization and salinity accumulation in the FOMBR.


Asunto(s)
Aguas Residuales , Purificación del Agua , Reactores Biológicos , Membranas Artificiales , Ósmosis , Aguas del Alcantarillado , Agua
12.
Chemosphere ; 240: 124882, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726609

RESUMEN

Biomimetic dynamic membrane (BDM) has been employed as a promising membrane separation technology regarding water/wastewater treatment (Model pollutant is methylene blue). Given its catalytic function on micro-pollutant removal and fouling control, detailed mechanism for impacts of fabrication method, carriers (CNT and GO) and laccase on the construction of biomimetic layer and enzyme immobilization have not been clear so far. In this work, the BDM performance with various fabrication methods, carriers and laccase were investigated and verified. The BDM fabrication tests demonstrated that BDM with mixed filtration method had better filtration performance (up to 120 L m-2 h-1 flux and 80% removal rate) than BDM with stepwise filtration method. Moreover, the laccases immobilized on GO exhibited a stronger laccase activity than those on CNT. Increasing CNT or GO dosage strengthened removal rate, but lowered flux, meanwhile flux and removal rate exhibited a significant fluctuation with certain laccase dosage. At 25 g m-2 CNT or GO dosage and 50 g m-2 laccase dosage, the optimized flux and removal rate values were obtained. Further study investigated the surface morphology and property of BDM, showing that BDM with mixed filtration method turned out to be the optimized enzyme immobilization mechanism and fabrication method. In addition, during multiple filtration cycles, with the optimized conditions, the removal rate, flux and laccase activity of BDM could maintain at high levels. On account of the finding of the present study, selecting a suitable fabrication method, appropriate CNT or GO dosage and laccase dosage can indeed optimize the structure of biomimetic layer and enzyme immobilization, expanding its possibility on sustainable operation.


Asunto(s)
Biomimética/métodos , Enzimas Inmovilizadas/química , Filtración/métodos , Lacasa/química , Membranas Artificiales , Purificación del Agua/métodos , Catálisis , Concentración de Iones de Hidrógeno , Azul de Metileno/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
13.
Water Res ; 62: 127-35, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24950459

RESUMEN

Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Nitrógeno/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Aerobiosis , Compuestos de Amonio/aislamiento & purificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Biopolímeros/análisis , Reactores Biológicos/microbiología , ADN Ribosómico/genética , Floculación , Nitrificación , Tamaño de la Partícula , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA