Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2319998121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513096

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.


Asunto(s)
Proteínas Fúngicas , Polisacáridos , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Difracción de Rayos X , Polisacáridos/metabolismo , Celulosa/metabolismo
2.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702503

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Asunto(s)
Quitina , Polisacáridos , Quitina/metabolismo , Polisacáridos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo
3.
J Biol Chem ; 296: 100086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199373

RESUMEN

Understanding enzymatic breakdown of plant biomass is crucial to develop nature-inspired biotechnological processes. Lytic polysaccharide monooxygenases (LPMOs) are microbial enzymes secreted by fungal saprotrophs involved in carbon recycling. LPMOs modify biomass by oxidatively cleaving polysaccharides, thereby enhancing the efficiency of glycoside hydrolases. Fungal AA9 LPMOs are active on cellulose, but some members also display activity on hemicelluloses and/or oligosaccharides. Although the active site subsites are well defined for a few model LPMOs, the molecular determinants driving broad substrate specificity are still not easily predictable. Based on bioinformatic clustering and sequence alignments, we selected seven fungal AA9 LPMOs that differ in the amino-acid residues constituting their subsites. Investigation of their substrate specificities revealed that all these LPMOs are active on cellulose and cello-oligosaccharides, as well as plant cell wall-derived hemicellulosic polysaccharides, and carry out C4 oxidative cleavage. The product profiles from cello-oligosaccharide degradation suggest that the subtle differences in amino-acid sequence within the substrate-binding loop regions lead to different preferred binding modes. Our functional analyses allowed us to probe the molecular determinants of substrate binding within two AA9 LPMO subclusters. Many wood-degrading fungal species rich in AA9 genes have at least one AA9 enzyme with structural loop features that allow recognition of short ß-(1,4)-linked glucan chains. Time-course monitoring of these AA9 LPMOs on cello-oligosaccharides also provides a useful model system for mechanistic studies of LPMO catalysis. These results are valuable for the understanding of LPMO contribution to wood decaying process in nature and for the development of sustainable biorefineries.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pared Celular/química , Biología Computacional , Hongos/enzimología , Hongos/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad por Sustrato
4.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932718

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Asunto(s)
Cobre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Sitios de Unión , Celulosa/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/ultraestructura , Oxidación-Reducción , Filogenia , Polisacáridos/metabolismo
5.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377002

RESUMEN

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Asunto(s)
Basidiomycota/enzimología , Biomasa , Oxigenasas de Función Mixta/química , Polisacáridos/química , Madera/microbiología , Biodegradación Ambiental , Biotecnología/economía , Biotecnología/métodos , Celulosa/química , Biología Computacional , Análisis Costo-Beneficio , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Genómica , Glicosilación , Oxígeno/química , Filogenia , Especificidad por Sustrato , Transcriptoma , Xilanos/química
6.
New Phytol ; 220(4): 1309-1321, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29624684

RESUMEN

In ectomycorrhiza, root ingress and colonization of the apoplast by colonizing hyphae is thought to rely mainly on the mechanical force that results from hyphal tip growth, but this could be enhanced by secretion of cell-wall-degrading enzymes, which have not yet been identified. The sole cellulose-binding module (CBM1) encoded in the genome of the ectomycorrhizal Laccaria bicolor is linked to a glycoside hydrolase family 5 (GH5) endoglucanase, LbGH5-CBM1. Here, we characterize LbGH5-CBM1 gene expression and the biochemical properties of its protein product. We also immunolocalized LbGH5-CBM1 by immunofluorescence confocal microscopy in poplar ectomycorrhiza. We show that LbGH5-CBM1 expression is substantially induced in ectomycorrhiza, and RNAi mutants with a decreased LbGH5-CBM1 expression have a lower ability to form ectomycorrhiza, suggesting a key role in symbiosis. Recombinant LbGH5-CBM1 displays its highest activity towards cellulose and galactomannans, but no activity toward L. bicolor cell walls. In situ localization of LbGH5-CBM1 in ectomycorrhiza reveals that the endoglucanase accumulates at the periphery of hyphae forming the Hartig net and the mantle. Our data suggest that the symbiosis-induced endoglucanase LbGH5-CBM1 is an enzymatic effector involved in cell wall remodeling during formation of the Hartig net and is an important determinant for successful symbiotic colonization.


Asunto(s)
Celulasa/metabolismo , Laccaria/enzimología , Micorrizas/enzimología , Simbiosis/fisiología , Celulasa/química , Celulasa/aislamiento & purificación , Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa/metabolismo , Laccaria/genética , Mananos/metabolismo , Micorrizas/genética , Pichia/metabolismo , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
7.
Appl Microbiol Biotechnol ; 100(2): 697-706, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26452496

RESUMEN

The discovery of novel fungal lignocellulolytic enzymes is essential to improve the breakdown of plant biomass for the production of second-generation biofuels or biobased materials in green biorefineries. We previously reported that Ustilago maydis grown on maize secreted a diverse set of lignocellulose-acting enzymes including hemicellulases and putative oxidoreductases. One of the most abundant proteins of the secretome was a putative glucose-methanol-choline (GMC) oxidoreductase. The phylogenetic prediction of its function was hampered by the few characterized members within its clade. Therefore, we cloned the gene and produced the recombinant protein to high yield in Pichia pastoris. Functional screening using a library of substrates revealed that this enzyme was able to oxidize several aromatic alcohols. Of the tested aryl-alcohols, the highest oxidation rate was obtained with 4-anisyl alcohol. Oxygen, 1,4-benzoquinone, and 2,6-dichloroindophenol can serve as electron acceptors. This GMC oxidoreductase displays the characteristics of an aryl-alcohol oxidase (E.C.1.1.3.7), which is suggested to act on the lignin fraction in biomass.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Lignina/metabolismo , Ustilago/enzimología , 2,6-Dicloroindofenol/metabolismo , Benzoquinonas/metabolismo , Biomasa , Transporte de Electrón , Oxígeno/metabolismo , Filogenia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ustilago/metabolismo
8.
J Biol Chem ; 289(8): 5261-73, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24394409

RESUMEN

α-L-arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-L-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-L-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-L-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed ß-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-L-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Familia de Multigenes , Podospora/enzimología , Ustilago/enzimología , Arabinosa/metabolismo , Calorimetría , Dominio Catalítico , Celulosa/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Cinética , Modelos Moleculares , Filogenia
9.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24942338

RESUMEN

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Asunto(s)
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sitios Genéticos , Genoma Fúngico , Glicosilación , Anotación de Secuencia Molecular , Peroxidasas/genética , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimología , Análisis de Secuencia de ADN , Madera/microbiología
10.
Carbohydr Polym ; 343: 122465, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174080

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant polysaccharides such as cellulose. Several studies have reported LPMO action in synergy with other carbohydrate-active enzymes (CAZymes) for the degradation of lignocellulosic biomass but direct LPMO action at the plant tissue level remains challenging to investigate. Here, we have developed a MALDI-MS imaging workflow to detect oxidised oligosaccharides released by a cellulose-active LPMO at cellular level on maize tissues. Using this workflow, we imaged LPMO action and gained insight into the spatial variation and relative abundance of oxidised and non-oxidised oligosaccharides. We reveal a targeted action of the LPMO related to the composition and organisation of plant cell walls.


Asunto(s)
Oxigenasas de Función Mixta , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zea mays , Zea mays/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Celulosa/química , Celulosa/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Lignina/química , Lignina/metabolismo , Oxidación-Reducción , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
11.
Sci Rep ; 13(1): 11586, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463979

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.


Asunto(s)
Basidiomycota , Cobre , Filogenia , Cobre/metabolismo , Proteómica , Polisacáridos/metabolismo , Celulosa/metabolismo , Basidiomycota/metabolismo , Fosfatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
BMC Genomics ; 13: 57, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22300648

RESUMEN

BACKGROUND: Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. RESULTS: In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. CONCLUSION: This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.


Asunto(s)
Biomasa , Genoma Fúngico , Lignina/metabolismo , Ustilago/enzimología , Análisis por Conglomerados , Regulación Enzimológica de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Hidrólisis , Oxidorreductasas/metabolismo , Proteoma/análisis , Trichoderma/enzimología , Ustilago/genética
13.
Appl Environ Microbiol ; 77(1): 237-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21037302

RESUMEN

To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional proteins in the yeast Pichia pastoris. These novel fungal CAZymes belonging to different glycoside hydrolase families (PaMan5A and PaMan26A mannanases, PaXyn11A xylanase, and PaAbf51A and PaAbf62A arabinofuranosidases) were able to break down their predicted cognate substrates. Although PaMan5A and PaMan26A displayed similar specificities toward a range of mannan substrates, they differed in their end products, suggesting differences in substrate binding. The N-terminal CBM35 module of PaMan26A displayed dual binding specificity toward xylan and mannan. PaXyn11A harboring a C-terminal CBM1 module efficiently degraded wheat arabinoxylan, releasing mainly xylobiose as end product. PaAbf51A and PaAbf62A arabinose-debranching enzymes exhibited differences in activity toward arabinose-containing substrates. Further investigation of the contribution made by each P. anserina auxiliary enzyme to the saccharification of wheat straw and spruce demonstrated that the endo-acting hemicellulases (PaXyn11A, PaMan5A, and PaMan26A) individually supplemented the secretome of the industrial T. reesei CL847 strain. The most striking effect was obtained with PaMan5A that improved the release of total sugars by 28% and of glucose by 18%, using spruce as lignocellulosic substrate.


Asunto(s)
Biomasa , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Podospora/enzimología , Trichoderma/metabolismo , Clonación Molecular , Expresión Génica , Glicósido Hidrolasas/genética , Hidrólisis , Datos de Secuencia Molecular , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Triticum
14.
Nat Commun ; 12(1): 2132, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837197

RESUMEN

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes. Expression of five fungal enzymes, including three from unexplored clades, expands the AA7-substrate range and unveils a cellooligosaccharide dehydrogenase activity, previously unknown within AA7. Sequence and structural analyses identify unique signatures distinguishing the strict dehydrogenase clade from canonical AA7 oxidases. The discovered dehydrogenase directly is able to transfer electrons to an AA9 lytic polysaccharide monooxygenase (LPMO) and fuel cellulose degradation by LPMOs without exogenous reductants. The expansion of redox-profiles and substrate range highlights the functional diversity within AA7 and sets the stage for harnessing AA7 dehydrogenases to fine-tune LPMO activity in biotechnological conversion of plant feedstocks.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Oomicetos/enzimología , Oxidorreductasas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Flavoproteínas Transportadoras de Electrones/metabolismo , Pruebas de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/ultraestructura , Microbiología Industrial/métodos , Espectroscopía de Resonancia Magnética , Oomicetos/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/ultraestructura , Filogenia , Análisis de Secuencia de ADN , Especificidad por Sustrato
15.
Commun Biol ; 4(1): 871, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267314

RESUMEN

Fungal biotechnology is set to play a keystone role in the emerging bioeconomy, notably to address pollution issues arising from human activities. Because they preserve biological diversity, Biological Resource Centres are considered as critical infrastructures to support the development of biotechnological solutions. Here, we report the first large-scale phenotyping of more than 1,000 fungal strains with evaluation of their growth and degradation potential towards five industrial, human-designed and recalcitrant compounds, including two synthetic dyes, two lignocellulose-derived compounds and a synthetic plastic polymer. We draw a functional map over the phylogenetic diversity of Basidiomycota and Ascomycota, to guide the selection of fungal taxa to be tested for dedicated biotechnological applications. We evidence a functional diversity at all taxonomic ranks, including between strains of a same species. Beyond demonstrating the tremendous potential of filamentous fungi, our results pave the avenue for further functional exploration to solve the ever-growing issue of ecosystems pollution.


Asunto(s)
Biotecnología/métodos , Colorantes/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Lignina/metabolismo , Plásticos/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/metabolismo , Hongos/clasificación , Hongos/genética , Variación Genética , Geografía , Humanos , Fenotipo , Filogenia , Especificidad de la Especie
16.
DNA Res ; 27(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32531032

RESUMEN

White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.


Asunto(s)
Deshidrogenasas de Carbohidratos/genética , Proteínas Fúngicas/genética , Lignina/genética , Pycnoporus/enzimología , Deshidrogenasas de Carbohidratos/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Lignina/metabolismo , Filogenia , Pycnoporus/clasificación , Pycnoporus/genética , Madera/metabolismo , Madera/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA