Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 3): 114001, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934144

RESUMEN

Polyhydroxyalkanoates (PHA), especially poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is considered as the most suitable candidate to replace petrochemical plastics. However, the high production cost and the composition of the monomers in the copolymer are the major constraints in production. The 3-hydroxyvalerate (3HV) rich copolymers are ideal for various applications due to their lower melting points, improved elasticity, and ductility. Haloferax mediterranei is a suitable microorganism for the production of biopolymer PHBV from biowaste. Nevertheless, the potential of H. mediterranei cultivated on food waste as sustainable substrate and levulinic acid as an inducer has not been explored for PHBV production. This study aims at the valorization of food waste as low-cost substrate and evaluation of effect of levulinic acid in the production and composition of PHBV using H. mediterranei. Shake-flask fermentations using different concentrations of salt, glucose and levulinic acid were first performed to optimize the cultivation conditions. The highest growth of the halophile was observed at salt concentration of 15% and glucose of concentration 10 g/L. Under optimized growth conditions, H. mediterranei was cultivated for PHBV production in fed-batch bioreactor with pulse fed levulinic acid. The maximum biomass of 3.19 ± 0.66 g/L was achieved after 140 h of cultivation with 3 g/L of levulinic acid. A decrease in H. mediterranei growth was noticed with the increase in levulinic acid concentration in the range of 3-10 g/L. The overall yield of PHBV at 3, 5, 7 and 10 g/L of levulinic acid were 18.23%, 56.70%, 31.54%, 21.29%, respectively. The optimum concentration of 5 g/L of levulinic acid was found to produce the maximum yield of 56.70% PHBV with 18.55 mol% 3HV content. A correlation between levulinic acid concentrations and PHBV production established in this study can serve as an important reference for future large-scale production.


Asunto(s)
Haloferax mediterranei , Polihidroxialcanoatos , Eliminación de Residuos , Alimentos , Glucosa , Ácidos Levulínicos , Poliésteres/química , Polihidroxialcanoatos/química
2.
Environ Res ; 215(Pt 1): 114323, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115419

RESUMEN

Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.


Asunto(s)
COVID-19 , Cupriavidus necator , Residuos Sanitarios , Eliminación de Residuos , Biopolímeros , Cupriavidus necator/metabolismo , Fermentación , Alimentos , Combustibles Fósiles , Humanos , Hidroxibutiratos , Ácidos Pentanoicos , Plásticos , Poliésteres , Valeratos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA