Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
N Engl J Med ; 385(6): 493-502, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34215024

RESUMEN

BACKGROUND: Transthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting TTR. METHODS: After conducting preclinical in vitro and in vivo studies, we evaluated the safety and pharmacodynamic effects of single escalating doses of NTLA-2001 in six patients with hereditary ATTR amyloidosis with polyneuropathy, three in each of the two initial dose groups (0.1 mg per kilogram and 0.3 mg per kilogram), within an ongoing phase 1 clinical study. RESULTS: Preclinical studies showed durable knockout of TTR after a single dose. Serial assessments of safety during the first 28 days after infusion in patients revealed few adverse events, and those that did occur were mild in grade. Dose-dependent pharmacodynamic effects were observed. At day 28, the mean reduction from baseline in serum TTR protein concentration was 52% (range, 47 to 56) in the group that received a dose of 0.1 mg per kilogram and was 87% (range, 80 to 96) in the group that received a dose of 0.3 mg per kilogram. CONCLUSIONS: In a small group of patients with hereditary ATTR amyloidosis with polyneuropathy, administration of NTLA-2001 was associated with only mild adverse events and led to decreases in serum TTR protein concentrations through targeted knockout of TTR. (Funded by Intellia Therapeutics and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT04601051.).


Asunto(s)
Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/terapia , Sistemas CRISPR-Cas , Edición Génica , Liposomas/uso terapéutico , Nanopartículas/uso terapéutico , Prealbúmina/genética , ARN Guía de Kinetoplastida/uso terapéutico , Femenino , Técnicas de Transferencia de Gen , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Prealbúmina/análisis , ARN Mensajero
2.
Arthritis Res Ther ; 17: 234, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26335795

RESUMEN

INTRODUCTION: CD40 ligand (CD40L) blockade has demonstrated efficacy in experimental autoimmune models. However, clinical trials of hu5c8, an anti-human CD40L IgG1 antibody, in systemic lupus erythematosus (SLE) were halted due to an increased incidence of thrombotic events. This study evaluated CDP7657, a high affinity PEGylated monovalent Fab' anti-CD40L antibody fragment, to assess whether an Fc-deficient molecule retains efficacy while avoiding the increased risk of thrombotic events observed with hu5c8. METHODS: The potency and cross-reactivity of CDP7657 was assessed in in vitro assays employing human and non-human primate leukocytes, and the capacity of different antibody formats to activate platelets in vitro was assessed using aggregometry and dense granule release assays. Given the important role CD40L plays in regulating humoral immunity, in vivo efficacy was assessed by investigating the capacity of Cynomolgus monkeys to generate immune responses to the tetanus toxoid antigen while the potential to induce thrombotic events in vivo was evaluated after repeat dosing of antibodies to Rhesus monkeys. A PEGylated anti-mouse CD40L was generated to assess efficacy in the New Zealand Black/White (NZB/W) mouse model of SLE. RESULTS: CDP7657 dose-dependently inhibited antigen-specific immune responses to tetanus toxoid in Cynomolgus monkeys, and in contrast to hu5c8, there was no evidence of pulmonary thrombovasculopathy in Rhesus monkeys. Aglycosyl hu5c8, which lacks Fc receptor binding function, also failed to induce thrombotic events in Rhesus monkeys. In vitro experiments confirmed that antibody constructs lacking an Fc, including CDP7657, did not induce human or monkey platelet activation. A PEGylated monovalent Fab' anti-mouse CD40L antibody also inhibited disease activity in the NZB/W mouse model of SLE after administration using a therapeutic dosing regimen where mice received antibodies only after they had displayed severe proteinuria. CONCLUSIONS: These findings demonstrate for the first time that anti-CD40L antibodies lacking a functional Fc region do not induce thrombotic events in Rhesus monkeys and fail to activate platelets in vitro but, nevertheless retain pharmacological activity and support the investigation of CDP7657 as a potential therapy for systemic lupus erythematosus and other autoimmune diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Ligando de CD40/inmunología , Inmunidad Humoral/inmunología , Trombosis/inmunología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Formación de Anticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/prevención & control , Modelos Animales de Enfermedad , Humanos , Inmunidad Humoral/efectos de los fármacos , Fragmentos Fab de Inmunoglobulinas/inmunología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/prevención & control , Macaca fascicularis , Macaca mulatta , Ratones Endogámicos NZB , Polietilenglicoles/química , Toxoide Tetánico/inmunología , Trombosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA