RESUMEN
Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.
Asunto(s)
Axones/patología , Genes Dominantes/genética , Mutación/genética , Neprilisina/genética , Polineuropatías/genética , Polineuropatías/patología , Tejido Adiposo/metabolismo , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Alelos , Péptidos beta-Amiloides/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Bases de Datos Genéticas , Demencia/complicaciones , Demencia/genética , Exoma/genética , Heterocigoto , Humanos , Ratones , Persona de Mediana Edad , Mutación Missense/genética , Neprilisina/análisis , Neprilisina/sangre , Neprilisina/deficiencia , Penetrancia , Polineuropatías/complicaciones , Piel/metabolismo , Nervio SuralRESUMEN
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Adulto , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/patología , Mapeo Cromosómico , Femenino , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Linaje , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Nervio Sural/patologíaRESUMEN
OBJECTIVE: To use linkage analysis and whole exome sequencing to identify the genetic mutation in a multigenerational Australian family with Charcot-Marie-Tooth disease type 2 (CMT2) and pyramidal signs. METHODS: Genome-wide linkage analysis was performed to map the locus. Whole exome sequencing was undertaken on selected individuals (3 affected, 1 normal), and segregation analysis and mutation screening were carried out using high-resolution melt analysis. The GEM.app database was queried to identify additional families with mutations. RESULTS: Significant linkage (2-point LOD score ≥ +3) and haplotype analysis mapped a new locus for CMT2 and pyramidal signs to a 6.6Mb interval on chromosome 22q12.1-q12.3. Whole exome sequencing identified a novel mutation (p.R252W) in the microrchidia CW-type zinc finger 2 (MORC2) gene mapping within the linkage region. The mutation fully segregated with the disease phenotype in the family. Screening additional families and querying unsolved CMT2 exomes, we identified the p.R252W mutation in 2 unrelated early onset CMT2 families and a second mutation p.E236G in 2 unrelated CMT2 families. Both the mutations occurred at highly conserved amino acid residues and were absent in the normal population. INTERPRETATION: We have identified a new locus in which MORC2 mutations are the likely pathogenic cause of CMT2 and pyramidal signs in these families. MORC2 encodes the human CW-type zinc finger 2 protein, which is a chromatin modifier involved in the regulation of DNA repair as well as gene transcription.
Asunto(s)
Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Predisposición Genética a la Enfermedad/genética , Tractos Piramidales/patología , Factores de Transcripción/genética , Adulto , Femenino , Humanos , Masculino , Mutación/genéticaRESUMEN
Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.
Asunto(s)
Envejecimiento/patología , Dineínas Citoplasmáticas/genética , Mitocondrias/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Glucagón/sangre , Ácido Glutámico/genética , Humanos , Insulina/sangre , Lisina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/ultraestructura , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , TransfecciónRESUMEN
OBJECTIVE: ITPR3, encoding inositol 1,4,5-trisphosphate receptor type 3, was previously reported as a potential candidate disease gene for Charcot-Marie-Tooth neuropathy. Here, we present genetic and functional evidence that ITPR3 is a Charcot-Marie-Tooth disease gene. METHODS: Whole-exome sequencing of four affected individuals in an autosomal dominant family and one individual who was the only affected individual in his family was used to identify disease-causing variants. Skin fibroblasts from two individuals of the autosomal dominant family were analyzed functionally by western blotting, quantitative reverse transcription PCR, and Ca2+ imaging. RESULTS: Affected individuals in the autosomal dominant family had onset of symmetrical neuropathy with demyelinating and secondary axonal features at around age 30, showing signs of gradual progression with severe distal leg weakness and hand involvement in the proband at age 64. Exome sequencing identified a heterozygous ITPR3 p.Val615Met variant segregating with the disease. The individual who was the only affected in his family had disease onset at age 4 with demyelinating neuropathy. His condition was progressive, leading to severe muscle atrophy below knees and atrophy of proximal leg and hand muscles by age 16. Trio exome sequencing identified a de novo ITPR3 variant p.Arg2524Cys. Altered Ca2+ -transients in p.Val615Met patient fibroblasts suggested that the variant has a dominant-negative effect on inositol 1,4,5-trisphosphate receptor type 3 function. INTERPRETATION: Together with two previously identified variants, our report adds further evidence that ITPR3 is a disease-causing gene for CMT and indicates altered Ca2+ homeostasis in disease pathogenesis.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Receptores de Inositol 1,4,5-Trifosfato , Mutación , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Genes Recesivos/genética , Heterocigoto , Receptores de Inositol 1,4,5-Trifosfato/genética , Mutación/genética , Linaje , FenotipoRESUMEN
Macrophages are important regulators of obesity-associated inflammation and PPARα and -γ agonism in macrophages has anti-inflammatory effects. In this study, we tested the efficacy with which liposomal delivery could target the PPARα/γ dual agonist tesaglitazar to macrophages while reducing drug action in common sites of drug toxicity: the liver and kidney, and whether tesaglitazar had anti-inflammatory effects in an in vivo model of obesity-associated dysmetabolism. Methods: Male leptin-deficient (ob/ob) mice were administered tesaglitazar or vehicle for one week in a standard oral formulation or encapsulated in liposomes. Following the end of treatment, circulating metabolic parameters were measured and pro-inflammatory adipose tissue macrophage populations were quantified by flow cytometry. Cellular uptake of liposomes in tissues was assessed using immunofluorescence and a broad panel of cell subset markers by flow cytometry. Finally, PPARα/γ gene target expression levels in the liver, kidney, and sorted macrophages were quantified to determine levels of drug targeting to and drug action in these tissues and cells. Results: Administration of a standard oral formulation of tesaglitazar effectively treated symptoms of obesity-associated dysmetabolism and reduced the number of pro-inflammatory adipose tissue macrophages. Macrophages are the major cell type that took up liposomes with many other immune and stromal cell types taking up liposomes to a lesser extent. Liposome delivery of tesaglitazar did not have effects on inflammatory macrophages nor did it improve metabolic parameters to the extent of a standard oral formulation. Liposomal delivery did, however, attenuate effects on liver weight and liver and kidney expression of PPARα and -γ gene targets compared to oral delivery. Conclusions: These findings reveal for the first time that tesaglitazar has anti-inflammatory effects on adipose tissue macrophage populations in vivo. These data also suggest that while nanoparticle delivery reduced off-target effects, yet the lack of tesaglitazar actions in non-targeted cells such (as hepatocytes and adipocytes) and the uptake of drug-loaded liposomes in many other cell types, albeit to a lesser extent, may have impacted overall therapeutic efficacy. This fulsome analysis of cellular uptake of tesaglitazar-loaded liposomes provides important lessons for future studies of liposome drug delivery.
Asunto(s)
Alcanosulfonatos/farmacología , Riñón/efectos de los fármacos , Liposomas/administración & dosificación , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Inflamación/metabolismo , Riñón/metabolismo , Liposomas/química , Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patologíaRESUMEN
White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.
Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/citología , Adipocitos Blancos/fisiología , Adipogénesis/fisiología , Transdiferenciación Celular , Cultivo Primario de Células/métodos , Adipocitos Marrones/citología , Animales , Transdiferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Membranas Artificiales , Ratones , Células RAW 264.7RESUMEN
Targeted nanoparticle delivery is a promising strategy for increasing efficacy and limiting side effects of therapeutics. When designing a targeted liposomal formulation, the in vivo biodistribution of the particles must be characterized to determine the value of the targeting approach. Peroxisome proliferator-activated receptor (PPAR) agonists effectively treat metabolic syndrome by decreasing dyslipidemia and insulin resistance but side effects have limited their use, making them a class of compounds that could benefit from targeted liposomal delivery. The adipose targeting sequence peptide (ATS) could fit this role, as it has been shown to bind to adipose tissue endothelium and induce weight loss when delivered conjugated to a pro-apoptotic peptide. To date, however, a full assessment of ATS in vivo biodistribution has not been reported, leaving important unanswered questions regarding the exact mechanisms whereby ATS targeting enhances therapeutic efficacy. We designed this study to evaluate the biodistribution of ATS-conjugated liposomes loaded with the PPARα/γ dual agonist tesaglitazar in leptin-deficient ob/ob mice. The ATS-liposome biodistribution in adipose tissue and other organs was examined at the cellular and tissue level using microscopy, flow cytometry, and fluorescent molecular tomography. Changes in metabolic parameters and gene expression were measured by target and off-target tissue responses to the treatment. Unexpectedly, ATS targeting did not increase liposomal uptake in adipose relative to other tissues, but did increase uptake in the kidneys. Targeting also did not significantly alter metabolic parameters. Analysis of the liposome cellular distribution in the stromal vascular fraction with flow cytometry revealed high uptake by multiple cell types. Our findings highlight the need for thorough study of in vivo biodistribution when evaluating a targeted therapy.
Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Sistemas de Liberación de Medicamentos , Tejido Adiposo/efectos de los fármacos , Alcanosulfonatos/farmacología , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Liposomas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Especificidad de Órganos/efectos de los fármacos , Péptidos/farmacología , Fenilpropionatos/farmacologíaRESUMEN
Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dineínas Citoplasmáticas/genética , Enfermedad de la Neurona Motora/genética , Mutación , Fenotipo , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Humanos , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/patología , Músculo Esquelético/patologíaRESUMEN
We compared features of nerve enlargement in inherited and acquired demyelinating neuropathies using ultrasound. We measured median and ulnar nerve cross-sectional areas in proximal and distal regions in 128 children and adults with inherited [Charcot-Marie-Tooth-1 (CMT-1) (n = 35)] and acquired [chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 55), Guillaine-Barre syndrome (GBS) (n = 21) and multifocal motor neuropathy (MMN) (n = 17)] demyelinating neuropathies. We classified nerve enlargement by degree and number of regions affected. We defined patterns of nerve enlargement as: none, no enlargement; mild, nerves enlarged but never more than twice normal; regional, nerves normal in at least one region and enlarged more than twice normal in at least one region; diffuse, nerves enlarged at all four regions with at least one region more than twice normal size. Nerve enlargement was commonly diffuse (89 %) and generally more than twice normal size in CMT-1, but not (p < 0.001) in acquired disorders which mostly had either no, mild or regional nerve enlargement [CIDP (64 %), GBS (95 %), and MMN (100 %)]. In CIDP, subjects treated within 3 months of disease onset had less nerve enlargement than those treated later. Ultrasound identified patterns of diffuse nerve enlargement can be used to screen patients suspected of having CMT-1. Normal, mildly, or regionally enlarged nerves in demyelinating polyneuropathy suggests an acquired etiology. Early treatment in CIDP may impede nerve enlargement.