Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Bioresour Technol ; 368: 128324, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400276

RESUMEN

After several rounds of milling process for sugars extraction from sugarcane, certain amounts of water-soluble carbohydrates (WSC) still remain in sugarcane bagasse. It is a bottleneck to utilize WSC in sugarcane bagasse biorefinery, since these sugars are easily degraded into inhibitors during pretreatment. Herein, a simple pre-fermentation step before pretreatment was conducted, and 98 % of WSC in bagasse was fermented into d-lactic acid. The obtained d-lactic acid was stably preserved in bagasse and 5-hydroxymethylfurfural (HMF) generation was sharply reduced from 46.0 mg/g to 6.2 mg/g of dry bagasse, after dilute acid pretreatment. Consequently, a higher d-lactic acid titer (57.0 g/L vs 33.2 g/L) was achieved from the whole slurry of the undetoxified and pretreated sugarcane bagasse by one-pot simultaneous saccharification and co-fermentation (SSCF), with the overall yield of 0.58 g/g dry bagasse. This study gave an efficient strategy for enhancing lactic acid production using the lignocellulosic waste from sugar industry.


Asunto(s)
Saccharum , Celulosa , Ácido Láctico , Fermentación , Agua , Hexosas , Grano Comestible
3.
Environ Pollut ; 292(Pt A): 118337, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644624

RESUMEN

Marine microplastics have received considerable attention as a global environmental issue. However, despite the constant accumulation of microplastics in the ocean, their transport processes and mechanisms remain poorly understood. This study investigated microplastics in the sediments of seagrass meadows and nearby regions without seagrass along the Shandong coast and found that the sediment in the seagrass meadows was a sink for microplastics. Subsequently, we evaluated the influence of eelgrass (Zostera marina), a common coastal seagrass, on the sedimentation of suspended polystyrene microplastics. The results showed that 0.5, 1.0, and 2.0 g/L eelgrass leaves decreased the abundance of microplastics in seawater in a dose-dependent manner over a period of 3-48 h under shaking conditions at 120 rpm at 22 °C. After 48 h of shaking, microplastic abundances in the 0.5, 1.0, and 2.0 g/L eelgrass groups significantly decreased by 46.9%, 53.1%, and 88.4%, respectively. Microplastics can adhere to eelgrass leaves and form biofilms, which promoted the formation of white floc that traps the suspended microplastics, causing them to sink. Furthermore, two epiphytic bacteria (Vibrio and Exiguobacterium) isolated from the eelgrass leaves decreased the abundances of suspended microplastics by 95.7% and 94.5%, respectively, in 48 h by accelerating the formation of biofilms on the microplastics. Therefore, eelgrass and its epiphytic bacteria facilitated the sinking of microplastics and increased the accumulation of microplastics in the sediments of seagrass meadows in coastal regions.


Asunto(s)
Zosteraceae , Bacterias , Microplásticos , Plásticos , Agua de Mar
4.
Bioresour Technol ; 337: 125443, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34171705

RESUMEN

Cheese whey is an abundant and low-cost feedstock with lactose as its main component, but the inability to metabolize lactose prevents Aureobasidium pullulans from using cheese whey directly. In this study, Kluyveromyces marxianus was permeabilized to obtain nonviable but biocatalytic cells for lactose hydrolysis, and the mixed culture of A. pullulans and permeabilized K. marxianus was conducted for polymalic acid (PMA) production from cheese whey. In the mixed culture, PMA titer varied directly to ß-galactosidase activity of K. marxianus, but inversely to cell viability of K. marxianus, and ethanol permeabilized K. marxianus was the most compatible with A. pullulans for PMA production. 37.8 g/L PMA was produced in batch fermentation, and PMA titer was increased to 97.3 g/L in fed-batch fermentation, with a productivity of 0.51 g/(L·h) and a yield of 0.56 g/g. This study paved an economical and environmentally friendly way for PMA production from cheese whey.


Asunto(s)
Queso , Kluyveromyces , Aureobasidium , Fermentación , Glucanos , Lactosa , Malatos , Polímeros , Suero Lácteo
5.
Adv Mater ; 33(33): e2100895, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34247433

RESUMEN

Neural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use. In this study, it is demonstrated that hydroxyapatite (HAp), the main component of bone, in the form of nanorods, can regulate the neural differentiation of NSCs and maturation of the newly differentiated cells. Culturing NSCs with HAp nanorods leads to the differentiation of NSCs into mature neurons that exhibit well-defined electrophysiological behavior within 5 days. The state of these neurons is much better than when culturing the cells without HAp nanorods, which undergo a 2-week differentiation process. Furthermore, RNA-sequencing data reveal that the neuroactive ligand-receptor interaction pathway is dominant in the enriched differentiated neuronal population. Hence, inorganic growth factors like HAp act as a feasible, effective, safe, and practical tool for regulating the differentiation of NSCs and can potentially be used in the treatment of neurodegenerative diseases.


Asunto(s)
Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Durapatita/química , Péptidos y Proteínas de Señalización Intercelular/efectos adversos , Nanotubos/química , Enfermedades Neurodegenerativas/terapia , Animales , Materiales Biocompatibles/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Durapatita/metabolismo , Fenómenos Electrofisiológicos , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Neuronas/citología , ARN Mensajero , Análisis de Secuencia de ARN , Trasplante de Células Madre , Terbio/química
6.
Bioresour Technol ; 310: 123458, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32380436

RESUMEN

Cell growth of Trichoderma reesei is greatly inhibited by furan derivatives (furfural and HMF) generated during pretreatment of lignocellulose, and the cellulase production is hence suppressed. In this study, a novel recombinant strain of T. reesei with high tolerance to furans was constructed by homologously co-expressing nicotinate phosphoribosyltransferase and alcohol dehydrogenase. We observed that furfural had a stronger inhibitory effect than HMF and cellulase production was decreased by 35% in T. reesei with the stress of 2.5 mM furfural. The activities of nicotinate phosphoribosyltransferase and alcohol dehydrogenase increased 8.6-fold and 2.9-fold in the recombinant strain, respectively. Furfural was effectively converted into furfuryl alcohol which was then depleted, thus the production of cellulase could be recovered when the recombinant strain was grown in 5% (w/v) two-step stem explosion pretreated rice straw without detoxification. This work presents an important strategy for efficient enzyme production in T. reesei from non-detoxified pretreated lignocellulose feedstocks.


Asunto(s)
Celulasa , Trichoderma , Alcohol Deshidrogenasa , Lignina , Pentosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA