Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(20): 13802-13811, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34586798

RESUMEN

A landfill is an important sink of plastic waste and potential sources of microplastics (MPs) when mineralized refuse is reused. However, limitations are still present in quantifying MPs in mineralized refuse and assessing their degradation degree. In this study, laser direct infrared spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify MPs of mineralized refuse from a landfill. Although 25-113 items/g MPs were detected in particles subjected to flotation, 37.9-674 µg/g polyethylene terephthalate (PET) and 0.0716-1.01 µg/g polycarbonate (PC) were detected in the residual solids by LC-MS/MS, indicating a great amount of plastic polymers still presented in the residue. This suggests that the commonly used flotation-counting method will lead to significant underestimation of MP pollution in mineralized refuse, which might be due to the aging and aggregation process caused by the long-term landfill process. The ratio of "bisphenol A/PC" and "plasticizer/MPs" was found to be positively correlated and negatively correlated with the landfill age, respectively. Therefore, in addition to the spectral index such as the carbonyl index, new indexes based on the concentrations of polymers, free monomers, and plasticizers were proposed to characterize the degradation degree of MPs in a landfill.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Cromatografía Liquida , Monitoreo del Ambiente , Plásticos/análisis , Espectrometría de Masas en Tándem , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 29(46): 70269-70284, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35589896

RESUMEN

Humic substances (HSs) can ameliorate soil pollution by mediating electron transfer between microorganisms and contaminants. This capability depends on the redox-active functional structure and electron transfer capacity (ETC) of HS. This study mainly aimed to analyze the effects of different ventilation quantities on the ETC and spectral characteristics of HS (including humic acids (HAs) and fulvic acids (FAs)) during sludge composting. HS was extracted from compost with different ventilation quantities (0.1, 0.2, and 0.3 L kg-1 dry matter min-1, denoted as VQ1, VQ2, and VQ3, respectively). The ETC of HS was measured by electrochemical method. Excitation-emission matrix (EEM) spectroscopy, ultraviolet and visible (UV-Vis) spectrophotometry, and Fourier transform infrared (FT-IR) spectroscopy were conducted to understand the evolution of HS composition during composting. Results indicated that the ETC of HA and FA increased during composting, and VQ2 had stronger ETC and electron recycling rate than VQ1 and VQ3 at the end of composting. UV-Vis analysis revealed that the humification degree, aromatization degree, and molecular weight of HA and FA increased during composting, while the content of lignin decreased. EEM-PARAFAC results suggested that VQ2 accelerated the degradation of protein-like substances. FT-IR revealed a decrease trend in polysaccharide and aliphatic, and the carboxyl content increased in VQ2 and VQ3 while decreased in VQ1. Correlation analysis was used to study the relationship between HS components and ETC. The results advance our further understanding of the pollution remediation mechanism of HS.


Asunto(s)
Compostaje , Sustancias Húmicas , Electrones , Sustancias Húmicas/análisis , Lignina , Polisacáridos , Aguas del Alcantarillado , Suelo , Espectroscopía Infrarroja por Transformada de Fourier
4.
Environ Pollut ; 315: 120304, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181927

RESUMEN

Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV365 irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C-C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.


Asunto(s)
Envejecimiento de la Piel , Contaminantes Químicos del Agua , Plásticos , Microplásticos , Especies Reactivas de Oxígeno , Materia Orgánica Disuelta , Poliestirenos , Contaminantes Químicos del Agua/química , Agua/química , Polímeros
5.
Bioresour Technol ; 346: 126587, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34933104

RESUMEN

The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.


Asunto(s)
Compostaje , Lignina , Estiércol , Suelo , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA