RESUMEN
Macrophage pyroptosis drives the secretion of IL-1ß, which has been recently reported to be a featured salivary biomarker for discriminating periodontitis in the presence of diabetes. This study aimed to explore whether macrophage pyroptosis plays a role in the development of diabetes mellitus-periodontitis, as well as potential therapeutic strategies. By establishing a model of experimental diabetes mellitus-periodontitis in rats, we found that IL-1ß and gasdermin D were highly expressed, leading to aggravated destruction of periodontal tissue. MCC950, a potent and selective molecule inhibitor of the NLRP3 inflammasome, effectively inhibited macrophage pyroptosis and attenuated alveolar bone losses in diabetes mellitus-periodontitis. Consistently, in vitro, high glucose could induce macrophage pyroptosis and thus promoted IL-1ß production in macrophages stimulated by lipopolysaccharide. In addition, autophagy blockade by high glucose via the mTOR-ULK1 pathway led to severe oxidative stress response in macrophages stimulated by lipopolysaccharide. Activation of autophagy by rapamycin, clearance of mitochondrial ROS by mitoTEMPO, and inhibition of inflammasome by MCC950 could significantly reduce macrophage pyroptosis and IL-1ß secretion. Our study demonstrates that hyperglycemia promotes IL-1ß production and pyroptosis in macrophages suffered by periodontal microbial stimuli. Modulation of autophagy activity and specific targeting of the ROS-inflammasome pathway may offer promising therapeutic strategies to alleviate diabetes mellitus-periodontitis.
Asunto(s)
Hiperglucemia , Periodontitis , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Lipopolisacáridos/farmacología , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Macrófagos/metabolismo , Autofagia , Periodontitis/metabolismo , Sulfonamidas/farmacología , Glucosa/metabolismoRESUMEN
Denture stomatitis (DS) is one of the frequent oral diseases caused by multiple factors among denture wearers and is an erythematous lesion of the mucosa in the denture-bearing area, which is a limited and non-specific damage that seriously endangers the oral health of denture wearers. Traditional drug treatment for DS is effective, but it is prone to the development of drug-resistant strains. Therefore, it is important to find new treating options. For the prevention and treatment of DS, there are various methods such as direct administration of azole and polyene antibiotics to the mucosal lesions, extra-oral cleaning of the denture by cleansers and physical disinfection, and modification of denture materials. Natural ingredient preparations that have emerged in recent years are safe, convenient, inexpensive, and less likely to produce drug-resistant strains, and are seen as new sources of drugs for DS treatment. Photodynamic therapy has shown superior antibacterial properties and is also considered promising due to the convenience and safety of the treatment process and the ease of developing drug resistance. Antibacterial agents endow dentures with new characteristics, and denture modification will be a new way to treat DS. In addition, combining different prevention and control methods has shown better antibacterial activity against Candida albicans, which also provides new ideas for prevention and treatment of DS in the future.
Asunto(s)
Enfermedades de la Boca , Fotoquimioterapia , Estomatitis Subprotética , Humanos , Estomatitis Subprotética/tratamiento farmacológico , Estomatitis Subprotética/prevención & control , Candida albicans , Antibacterianos/uso terapéutico , Antibacterianos/farmacologíaRESUMEN
Purpose: Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods: Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results: Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion: Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Asunto(s)
Berberina , Regeneración Ósea , Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Mitocondrias , Especies Reactivas de Oxígeno , Berberina/farmacología , Berberina/administración & dosificación , Berberina/química , Berberina/farmacocinética , Animales , Especies Reactivas de Oxígeno/metabolismo , Regeneración Ósea/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ratas , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Pérdida de Hueso Alveolar/tratamiento farmacológico , Palmitatos/química , Palmitatos/farmacología , Células CultivadasRESUMEN
BACKGROUND: Periodontal ligament stem cells (PDLSCs) are important seed cells in tissue engineering and clinical applications. They are the priority receptor cells for sensing various mechanical stresses. Yes-associated protein (YAP) is a recognized mechanically sensitive transcription factor. However, the role of YAP in regulating the fate of PDLSCs under tension stress (TS) and its underlying mechanism is still unclear. METHODS: The effects of TS on the morphology and fate of PDLSCs were investigated using fluorescence staining, transmission electron microscopy, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). Then qRT-PCR, western blotting, immunofluorescence staining and gene knockdown experiments were performed to investigate the expression and distribution of YAP and its correlation with PDLSCs proliferation. The effects of cytoskeleton dynamics on YAP nuclear translocation were subsequently explored by adding cytoskeleton inhibitors. The effect of cytoskeleton dynamics on the expression of the LINC complex was proved through qRT-PCR and western blotting. After destroying the LINC complex by adenovirus, the effects of the LINC complex on YAP nuclear translocation and PDLSCs proliferation were investigated. Mitochondria-related detections were then performed to explore the role of mitochondria in YAP nuclear translocation. Finally, the in vitro results were verified by constructing orthodontic tooth movement models in Sprague-Dawley rats. RESULTS: TS enhanced the polymerization and stretching of F-actin, which upregulated the expression of the LINC complex. This further strengthened the pull on the nuclear envelope, enlarged the nuclear pore, and facilitated YAP's nuclear entry, thus enhancing the expression of proliferation-related genes. In this process, mitochondria were transported to the periphery of the nucleus along the reconstructed microtubules. They generated ATP to aid YAP's nuclear translocation and drove F-actin polymerization to a certain degree. When the LINC complex was destroyed, the nuclear translocation of YAP was inhibited, which limited PDLSCs proliferation, impeded periodontal tissue remodeling, and hindered tooth movement. CONCLUSIONS: Our study confirmed that appropriate TS could promote PDLSCs proliferation and periodontal tissue remodeling through the mechanically driven F-actin/LINC complex/YAP axis, which could provide theoretical guidance for seed cell expansion and for promoting healthy and effective tooth movement in clinical practice.
Asunto(s)
Citoesqueleto , Membrana Nuclear , Ligamento Periodontal , Células Madre , Animales , Humanos , Masculino , Ratas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular , Células Cultivadas , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Células Madre/metabolismo , Células Madre/citología , Estrés Mecánico , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismoRESUMEN
Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG)3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.
Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Ácido Láctico/química , Nanopartículas/administración & dosificación , Ácido Poliglicólico/química , Alginatos/química , Animales , Antineoplásicos/química , Quitosano/química , Doxorrubicina/farmacología , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Concentración de Iones de Hidrógeno , Masculino , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Difracción de Rayos XRESUMEN
Scaffolds that can achieve cell adhesion and controlled release of protein drugs are very promising in bone tissue engineering. Due to their biocompatibility and injectablity, poly(lactide-co-glycolide acid) (PLGA) porous microspheres (PLGA-pMS) present potential scaffolds in bone tissue engineering. However, their application is hampered by the burst release of protein drugs and hydrophobicity that leads to poor cell adhesion. To overcome these drawbacks, we developed novel PLGA-pMS by incorporating bovine serum albumin (BSA) loaded chitosan microspheres (CS-MS) in Gly-Arg-Gly-Asp-Ser-Pro-Cys (GRGDSPC) modified PLGA-pMS (CS-MS/PLGA-pMS). GRGDSPC was used to enhance the hydrophilicity and cell affinity of the porous microspheres. Results showed that PLGA-pMS had a size of 446.77±19.46µm, with an average surface pore size of 21.56±3.02µm, whereas CS-MS had a size of 15.98±0.96µm and 16.35±0.38µm (5% and 10% TPP-prepared CS-MS, respectively). A scanning electron microscope (SEM) and a confocal laser scanning microscope (CLSM) revealed that CS-MS were partly embedded in the PLGA matrices and the integrity of CS-MS was retained. Thermogravimetry analyzer (TGA) also demonstrated that CS-MS were incorporated into PLGA-pMS. The CS-MS/PLGA-pMS had a size of 454.02±16.09µm, with a BSA encapsulation efficiency of 53.19±1.67% and 62.16±3.44% (5% and 10% TPP-prepared CS-MS, respectively). CS-MS/PLGA-pMS exhibited a sustained FITC-BSA release for 28 days. Modification of GRGDSPC significantly improved adhesion of MG-63 cells on the porous microspheres. In conclusion, CS-MS/PLGA-pMS may act as potential bifunctional scaffolds for bone tissue engineering.