Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 135(1): 131-148, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28780615

RESUMEN

Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.


Asunto(s)
Miopatías Distales/metabolismo , Mutación con Ganancia de Función , Proteínas del Choque Térmico HSP20/genética , Proteínas del Choque Térmico HSP20/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Atrofia/metabolismo , Atrofia/patología , Autofagia/fisiología , Modelos Animales de Enfermedad , Miopatías Distales/patología , Femenino , Proteínas de Choque Térmico , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/patología , Chaperonas Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatías Estructurales Congénitas/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología
2.
J Neuromuscul Dis ; 3(2): 183-200, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27854215

RESUMEN

BACKGROUND: Charcot-Marie-Tooth (CMT) and associated neuropathies, the most common inherited diseases of the peripheral nervous system, remain so far incurable. Three existing murine models of Charcot-Marie-Tooth type 2F (CMT2F) and/or distal hereditary motor neuropathy type IIb (dHMNIIb), caused by mutations in the small heat shock protein B1 gene (HSPB1/HSP27), partially recapitulate the hallmarks of peripheral neuropathy. Because these models overexpress the HSPB1 mutant proteins they differ from the patients' situation. OBJECTIVE: To overcome the possible bias induced by overexpression, we generated and characterized a transgenic model in which the wild type or mutant HSPB1 protein was expressed at a moderate, more physiologically relevant level. METHODS: We generated a new transgenic mouse model in which a human wild type (hHSPB1WT) or mutant (hHSPB1R127W; hHSPB1P182L) HSPB1 transgene was integrated in the mouse ROSA26 locus. The motor and sensory functions of the mice was assessed at 3, 6, 9, 12 and 18 month. RESULTS: However, the mice expressing the mutant hHSPB1 do not develop motor or sensory deficits and do not show any sign of axonal degeneration, even at late age. Quantitative PCR analyses reveal contrasting tissue-specific expression pattern for the endogenous mouse and exogenous human HSPB1 and show that the ratio of human HSPB1 to the endogenous mouse HspB1 is lower in the sciatic nerve and spinal cord compared to the brain. CONCLUSION: These results suggest that expressing the transgene at a physiological level using the ROSA26 locus may not be sufficient to model inherited peripheral neuropathies caused by mutation in HSPB1.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Modelos Animales de Enfermedad , Proteínas de Choque Térmico HSP27/genética , Ratones , Animales , Encéfalo/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Femenino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Ratones Transgénicos , Chaperonas Moleculares , Mutación , Nervio Ciático/metabolismo , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA