Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077222

RESUMEN

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Asunto(s)
Potexvirus , Virosis , Plantas , Potexvirus/genética , Nicotiana/genética , Factores de Transcripción
2.
Plant Biotechnol J ; 14(1): 231-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25879277

RESUMEN

We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.


Asunto(s)
Quimera/metabolismo , Epítopos/metabolismo , Nicotiana/genética , Células Vegetales/metabolismo , Potexvirus/fisiología , Virión/metabolismo , Animales , Especificidad de Anticuerpos/inmunología , Epítopos/inmunología , Epítopos/ultraestructura , Cobayas , Inmunización , Plantas Modificadas Genéticamente , Recombinación Genética/genética , Suspensiones , Nicotiana/citología , Nicotiana/virología , Virión/ultraestructura
3.
Viruses ; 13(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805417

RESUMEN

Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virus-based (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants. Interestingly, it was found that the two different strains Foot-and-mouth disease virus (FMDV) VP1 antigens with flexible linker peptides (77 or 82 amino acids) were directly expressed on the BaMV CP, and the chimeric particles self-assembled and continued to express FMDV antigens. The chimeric CP, when directly fused with a large foreign protein (117 amino acids), can self-fold into incomplete virus particles or disks. The physicochemical properties of heterologus peptides N-terminus, complex strand structures of heterologus peptides C-terminus and different flexible linker peptides, can affect the chimera accumulation. Based on these findings, using plant virus-based chimeras to express foreign proteins can increase their length limitations, and engineered plant-made CVP-based vaccines have increasing potential for further development as novel vaccines.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Potexvirus/genética , Antígenos Virales/inmunología , Epítopos/genética , Epítopos/inmunología , Virus de la Fiebre Aftosa/genética , Virus de Plantas/inmunología , Potexvirus/inmunología , Vacunas Sintéticas/inmunología , Virión/genética , Virión/inmunología
4.
Mol Plant Pathol ; 22(6): 627-643, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749125

RESUMEN

The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.


Asunto(s)
Proteínas Argonautas/metabolismo , Resistencia a la Enfermedad/genética , Orchidaceae/genética , Enfermedades de las Plantas/inmunología , Potexvirus/fisiología , Tobamovirus/fisiología , Proteínas Argonautas/genética , Orchidaceae/inmunología , Orchidaceae/virología , Fitomejoramiento , Enfermedades de las Plantas/virología , Potexvirus/genética , Interferencia de ARN
5.
Viruses ; 13(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34452417

RESUMEN

Synergistic interactions among viruses, hosts and/or transmission vectors during mixed infection can alter viral titers, symptom severity or host range. Viral suppressors of RNA silencing (VSRs) are considered one of such factors contributing to synergistic responses. Odontoglossum ringspot virus (ORSV) and cymbidium mosaic virus (CymMV), which are two of the most significant orchid viruses, exhibit synergistic symptom intensification in Phalaenopsis orchids with unilaterally enhanced CymMV movement by ORSV. In order to reveal the underlying mechanisms, we generated infectious cDNA clones of ORSV and CymMV isolated from Phalaenopsis that exerted similar unilateral synergism in both Phalaenopsis orchid and Nicotiana benthamiana. Moreover, we show that the ORSV replicase P126 is a VSR. Mutagenesis analysis revealed that mutation of the methionine in the carboxyl terminus of ORSV P126 abolished ORSV replication even though some P126 mutants preserved VSR activity, indicating that the VSR function of P126 alone is not sufficient for viral replication. Thus, P126 functions in both ORSV replication and as a VSR. Furthermore, P126 expression enhanced cell-to-cell movement and viral titers of CymMV in infected Phalaenopsis flowers and N. benthamiana leaves. Taking together, both the VSR and protein function of P126 might be prerequisites for unilaterally enhancing CymMV cell-to-cell movement by ORSV.


Asunto(s)
Coinfección/virología , Orchidaceae/virología , Células Vegetales/virología , Potexvirus/metabolismo , Tobamovirus/metabolismo , Proteínas de la Cápside/genética , Sinergismo Farmacológico , Interacciones Microbianas , Potexvirus/genética , Interferencia de ARN , ARN Viral/genética , Nicotiana/virología , Tobamovirus/genética , Replicación Viral
6.
Sci Rep ; 9(1): 10230, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308424

RESUMEN

Taxonomically distinct Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) are two of the most prevalent viruses worldwide; when co-infecting orchids, they cause synergistic symptoms. Because of the huge economic loss in quality and quantity in the orchid industry with virus-infected orchids, virus-resistant orchids are urgently needed. To date, no transgenic resistant lines against these two viruses have been reported. In this study, we generated transgenic Nicotiana benthamiana expressing various constructs of partial CymMV and ORSV genomes. Several transgenic lines grew normally and remained symptomless after mixed inoculation with CymMV and ORSV. The replication of CymMV and ORSV was approximately 70-90% lower in protoplasts of transgenic lines than wild-type (WT) plants. Of note, we detected extremely low or no viral RNA or capsid protein of CymMV and ORSV in systemic leaves of transgenic lines after co-infection. Grafting experiments further revealed that CymMV and ORSV trafficked extremely inefficiently from co-infected WT stocks to transgenic scions, presumably due to RNA-mediated interference. This study reports the first successful creation of dual resistant transgenic lines against CymMV and ORSV. Our studies shed light on the commercial development of transgenic orchid production to combat the global viral threat.


Asunto(s)
Nicotiana/genética , Potexvirus/genética , Tobamovirus/genética , Proteínas de la Cápside/genética , Cartilla de ADN/genética , Ingeniería Genética/métodos , Orchidaceae/genética , Orchidaceae/virología , Plantas Modificadas Genéticamente/genética , Potexvirus/patogenicidad , Protoplastos , Interferencia de ARN , ARN Viral/genética , Tobamovirus/patogenicidad , Replicación Viral/genética
7.
BMC Biotechnol ; 7: 62, 2007 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17900346

RESUMEN

BACKGROUND: Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. METHODS: We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164) of FMDV VP1. RESULTS: The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-gamma. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. CONCLUSION: Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.


Asunto(s)
Epítopos/inmunología , Virus de la Fiebre Aftosa/inmunología , Virus de Plantas/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Western Blotting , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Chenopodium quinoa/virología , ADN Recombinante/genética , ADN Recombinante/inmunología , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Epítopos/metabolismo , Virus de la Fiebre Aftosa/genética , Vectores Genéticos/genética , Interferón gamma/sangre , Microscopía Electrónica , Modelos Genéticos , Reacción en Cadena de la Polimerasa , Sasa/virología , Porcinos , Vacunación , Vacunas Virales/genética , Virión/genética , Virión/inmunología , Virión/ultraestructura
8.
Front Microbiol ; 8: 788, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28515719

RESUMEN

Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA