Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 65, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109874

RESUMEN

Stem cell-derived exosomes have recently been regarded as potential drugs for treating spinal cord injury (SCI) by reducing reactive oxygen species (ROS) and suppressing M1 macrophage polarization. However, the roles of ROS and exosomes in the process of M1 macrophage polarization are not known. Herein, we demonstrated that ROS can induce M1 macrophage polarization and have a concentration-dependent effect. ROS can induce M1 macrophage polarization through the MAPK-NFκB P65 signaling pathway. Dental pulp stem cell (DPSC)-derived exosomes can reduce macrophage M1 polarization through the ROS-MAPK-NFκB P65 signaling pathway in treating SCI. This study suggested that DPSC-derived exosomes might be a potential drug for treating SCI. Disruption of the cycle between ROS and M1 macrophage polarization might also be a potential effective treatment by reducing secondary damage.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Pulpa Dental , Exosomas/metabolismo , Humanos , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Células Madre
2.
J Drug Target ; 31(2): 217-224, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36214127

RESUMEN

OBJECTIVE: To design and construct a hydrogel drug-controlled release system loaded with gentamicin on a titanium surface, and to evaluate the in vitro drug release behaviour and antibacterial properties and biocompatibility of the controlled release system. METHODS: Titanium (Ti) surface was coated with poly dopamine (PDA) substrate, and then polyethylene glycol (PEG) was attached to PDA. The composite drug microsphere controlled release layer formed by gentamicin (GEN) and cross-linked starch (CSt) were subsequently covered with poly lactic⁃co⁃glycolic acid (PLGA) as a barrier to construct a Ti-GEN-Cst-PLGA anti-infective drug controlled release system. RESULTS: The hydrogel drug release system was successfully constructed. The results of in vitro anti-staphylococcus aureus (SAU) assay, anti-staphylococcus epidermidis (SEP) assay and anti-Escherichia coli (ECO) assay showed that Ti-GEN-Cst-PLGA could effectively inhibit the growth of three bacteria. Assay in the New Zealand rabbit found that Ti-GEN-Cst-PLGA could promote wound healing at the 3rd week after implantation, and the pathology assay found that the Ti-GEN-Cst-PLGA group had less inflammatory reactions and significant tissue proliferation at the endophyte contact surface. CONCLUSION: Ti-GEN-Cst-PLGA can effectively inhibit the inflammatory response and promote wound healing, or may be a potential treatment for orthopaedic endophytes.


Asunto(s)
Gentamicinas , Titanio , Animales , Conejos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Titanio/farmacología , Gentamicinas/farmacología , Preparaciones de Acción Retardada , Microesferas , Materiales Biocompatibles , Polietilenglicoles/química , Hidrogeles , Almidón/química
3.
Regen Ther ; 24: 651-661, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38074191

RESUMEN

Background aims: Spinal cord injury (SCI) is one of the most complex and destructive diseases of the nervous system, which can lead to permanent loss of tactile perception. But existing treatment methods have limited effects. To establish a novel method that may be therapeutic in repairing the injured spinal cord, gene-modified dental pulp stem cells (DPSCs) were injected in situ. Methods: Adenovirus carrying osteopontin (OPN), Insulin-like growth factor 1 (IGF-1) and cailiary-derived neurotrophic factor (CNTF) (Ad-OIC) was constructed. After modified with Ad-OIC, supernatant of DPSC were co-cultured with HT-22 cells and the effect of DPSC-OIC on the HT-22 cells were evaluated via Cell Counting Kit-8 (CCK-8) assay, Real-Time polymerase chain reaction (PCR) analysis, laser confocal microscopy and fluorescence activating cell sorter (FACS). DPSC-OIC were injected in the lesion area of injured spinal cord and the survival time of transplanted cells were measured by bioluminescence imaging system. The recovery of the injured spinal cord was evaluated by behavioral score, radiological evaluation and immunopathological analysis. Results: DPSC-OIC could enhance the proliferation and axon growth of HT-22 cells, and protect HT-22 cells from H2O2 induced apoptosis. The transplanted DPSC-Null or DPSC-OIC could survive for more than two weeks in local injection site. DPSC-OIC treatment could increase Basso-Mouse Scale (BMS) scores, improve Magnetic Resonance Imaging (MRI) manifestation and promote bladder function recovery. Less apoptotic neurons and more proliferative cells were found in the lesion area of DPSC-OIC treated spinal cord. Nestin+ cells and neural stem cell marker (Sox2) were both up-regulated after DPSC-OIC treatment. Additionally, inhibitory extracellular matrix proteoglycan Neural/Glial Antigen 2 (NG2) was down-regulated and axon growth promotive factor fibronectin was up-regulated after both DPSC-Null (DPSCs infected with Ad-Null) and DPSC-OIC treatments. Conclusions: DPSC-OIC could be a novel effective method for treating SCI.

4.
Stem Cells Int ; 2022: 7590337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299466

RESUMEN

Intervertebral disc (IVD) degeneration is the primary cause for low back pain that has a high prevalence in modern society and poses enormous economic burden on patients. Few effective therapeutic strategies are available for IVD degeneration treatment. To understand the biological effects of dental pulp stem cells (DPSCs) on nucleus pulposus (NP) cells, we carried out RNA sequencing, bioinformatic analysis which unveiled gene expression differences, and pathway variation in primarily isolated patients' NP cells after treatment with DPSCs supernatant. Western blot and immunofluorescence were used to verify these molecular alterations. Besides, to evaluate the therapeutic effect of DPSCs in IVD degeneration treatment, DPSCs were injected into a degeneration rat model in situ, with treatment outcome measured by micro-CT and histological analysis. RNA sequencing and in vitro experiments demonstrated that DPSCs supernatant could downregulate NP cells' inflammation-related NF-κB and JAK-STAT pathways, reduce IL-6 production, increase collagen II expression, and mitigate apoptosis. In vivo results showed that DPSCs treatment protected the integrity of the disc structure, alleviated extracellular matrix degradation, and increased collagen fiber expression. In this study, we verified the therapeutic effect of DPSCs in an IVD degeneration rat model and elucidated the underlying molecular mechanism of DPSCs treatment, which provides a foundation for the application of DPSCs in IVD degeneration treatment.

5.
Biomater Sci ; 8(18): 5172-5182, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32840508

RESUMEN

The induction of autophagy in cancer cells would occur in response to several therapy strategies, including chemotherapy and photothermal therapy (PTT). Hence, combined autophagy inhibition has been regarded as a prevailing strategy to enhance treatment sensitivity in cancers. Herein, dual pH/thermal responsive biomineralized nanocomposites (PCNPs) were rationally designed and prepared based on the hierarchical assembly of calcium phosphate (CaP) and polydopamine (PDA). The first step in the self-assembly process involves the incorporation of hydrophobic chemotherapeutic docetaxel (DTX) into the CaP nanoparticles. Next, PDA was utilized as the coating to hierarchically self-assemble onto the surface of CaP through a simple self-polymerization of dopamine. Third, the autophagy inhibitor chloroquine (CQ) was absorbed onto the surface of PDA via non-covalent interactions, forming PCNPs/DC. CQ was the only FDA approved autophagy inhibitor in clinical trials that could inhibit autophagosome fusion and degradation. The resulting PCNPs/DC could exhibit dual pH/thermal responsive properties due to the acid-sensitive CaP core and the photothermal effect of the PDA coating. Effective inhibition of autophagy in cancer cells could be realized by blocking the lysosome and weakening the degradation of autolysosomes by PCNPs/DC. Interestingly, complementary autophagy inhibition could therefore sensitize the effects of chemo-photothermal therapy both in vitro and in vivo with negligible toxicity. Therefore, these hierarchically assembled biomineralized nanocomposites would be used as a prevailing strategy to sensitize chemo-photothermal therapy by complementary autophagy inhibition.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Nanopartículas , Animales , Autofagia , Fosfatos de Calcio , Indoles , Ratones , Ratones Endogámicos BALB C , Fototerapia , Terapia Fototérmica , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA