Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779169

RESUMEN

The solid dispersion technique, which is widely used in the medical field, was applied to prepare a pesticide dosage form of emamectin benzoate (EM). The preparation, physicochemical characterization, aqueous solubility, release dynamics, photolytic degradation, bioactivity, and sustained-release effects of the prepared EM solid dispersions were studied by a solvent method, using polymer materials as the carriers. Water-soluble polyvinyl pyrrolidone (PVP) K30 and water-insoluble polyacrylic resin (PR)III were used as the carriers. The influence of various parameters, such as different EM:PVP-K30 and EM:PRIII feed ratios, solvent and container choices, rotational speed and mixing time effects on pesticide loading, and the entrapment rate of the solid dispersions were investigated. The optimal conditions for the preparation of EM-PVP-K30 solid dispersions required the use of methanol and a feed ratio between 1:1 and 1:50, along with a rotational speed and mixing time of 600 rpm and 60 min, respectively. For the preparation of EM-PRIII solid dispersions, the use of methanol and a feed ratio between 1:4 and 1:50 were required, in addition to the use of a porcelain mortar for carrying out the process. Under optimized conditions, the prepared EM-PVP-K30 solid dispersions resembled potato-like, round, and irregular structures with a jagged surface. In contrast, the EM-PRIII solid dispersions were irregular solids with a microporous surface structure. The results of X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), ultraviolet (UV) spectrometry, and infrared (IR) spectrometry showed that the solid dispersions were formed by intermolecular hydrogen bonding. The solid dispersion preparation in PVP-K30 significantly improved the solubility and dissolution rate of EM, particularly the aqueous solubility, which reached a maximum of 37.5-times the EM technical solubility, when the feed ratio of 1:10 was employed to prepare the dispersion. Importantly, the wettable powder of EM-PVP-K30 solid dispersion enhanced the insecticidal activity of EM against the Plutella xylostella larvae. Furthermore, the solid dispersion preparation in PRIII afforded a significant advantage by prolonging the EM technical release in water at a pH below 7.0, especially when the PRIII content in solid dispersions was high. While the amplified toxicity of the wettable powder of EM-PRIII solid dispersions against the P. xylostella larvae showed no significant differences from that of the EM technical, the long-term toxicity under the field condition was much better than that of the commercially available EM 1.5% emulsifiable concentrate. Notably, solid dispersions with both the PVP-K30 and PRIII carriers reduced the effect of UV photolysis.


Asunto(s)
Preparaciones de Acción Retardada/química , Ivermectina/análogos & derivados , Tecnología Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Ivermectina/química , Polímeros/química , Polivinilos/química , Polvos/química , Pirrolidinas/química , Solubilidad , Solventes/química , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rayos Ultravioleta , Difracción de Rayos X/métodos
2.
Anal Sci ; 33(7): 793-799, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690256

RESUMEN

A sensitive capsaicin sensor was constructed based on a poly(sodium 4-styrenesulfonate) functionalized graphite modified screen printed electrode (PSS-Grp/SPE) in this study. The PSS-Grp and poly(diallyldimethylammonium chloride) functionalized graphite (PDDA-Grp) were easily synthesized by interacting Grp with PSS and PDDA through sonication, and resulted in negative and with positive charges on the surface, respectively. The prepared PSS-Grp and PDDA-Grp were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet and visible spectroscopy (UV-vis). The electrochemical performance of PSS-Grp in a 50 µM capsaicin solution presented a current density of 33 µA cm-2, which was much higher than the PDDA-Grp of 1.5 µA cm-2. Our study showed that capsaicin could interact better with strong negative charges on the PSS-Grp/SPE surface to give a higher electrochemical response. The direct electrochemical sensing of capsaicin was achieved at PSS-Grp/SPE using differential pulse stripping voltammetry (DPSV) under the optimized conditions.


Asunto(s)
Capsaicina/análisis , Técnicas Electroquímicas , Grafito/química , Polímeros/química , Ácidos Sulfónicos/química , Electrodos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA