Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Biol Macromol ; 277(Pt 1): 133728, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019700

RESUMEN

Passive radiative cooling material of cellulose by coupling inorganic nanoparticles, have demonstrated competitive advantages in sustainably cooling buildings and constructions due to their voluminous availability, biodegradability, renewability, and natural origin. However, the weak stability of cellulose-inorganic nanoparticle materials when exposed to water or external forces remains a significant challenge that impedes their practical application. In this study, we proposed an easy-to-prepare, scalable, and robust cooling cellulose composite by coupling nano-SiO2 and cellulose acetate (CA) within cellulose fibers, using the mature pulping and paper process (filling of inorganic particles of nano-SiO2 and subsequent sizing of polymer of CA). More importantly, the CA molecules form the strong bonding with the cellulose molecules due to the high similarity of their molecular structure, which makes CA function as a "glue" to effectively fasten nano-SiO2 on the cellulose fibers. Correspondingly, our cellulose composite features desirable robustness and structural stability even undergoing mechanical beating and water-soaking treatments, demonstrating its excellent robustness and desirable adaptability to natural environments, such as wind and rain. As a result, despite undergoing water-soaking (for 40 days) or environmental exposure (for 90 days), the cooling cellulose composite still exhibits excellent solar reflectance (>95 %) and infrared thermal emissivity (>0.95 at 8-13 µm), enabling sub-ambient temperature (∼6.5 °C during daytime and ∼8 °C at nighttime) throughout the day. Our cooling cellulose composite demonstrates promising potential as an environmentally friendly, low-cost, and stable cooling material in our low-carbon society.


Asunto(s)
Celulosa , Dióxido de Silicio , Celulosa/química , Celulosa/análogos & derivados , Dióxido de Silicio/química , Nanopartículas/química , Nanocompuestos/química , Temperatura
2.
Adv Healthc Mater ; 13(13): e2304676, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38294131

RESUMEN

Adhesive hydrogel holds huge potential in biomedical applications, such as hemostasis and emergent wound management during outpatient treatment or surgery. However, most adhesive hydrogels underperform to offer robust adhesions on the wet tissue, increasing the risk of hemorrhage and reducing the fault tolerance of surgery. To address this issue, this work develops a polysaccharide-based bioadhesive hydrogel tape (ACAN) consisting of dual cross-linking of allyl cellulose (AC) and carboxymethyl chitosan (CMCS). The hygroscopicity of AC and CMCS networks enables ACAN to remove interfacial water from the tissue surface and initializes a physical cross-link instantly. Subsequently, covalent cross-links are developed with amine moieties to sustain long-term and robust adhesion. The dual cross-linked ACAN also has good cytocompatibility with controllable mechanical properties matching to the tissue, where the addition of CMCS provides remarkable antibacterial properties and hemostatic capability. Moreover, compared with commercially available 3 M film, ACAN provides an ultrafast wound healing on tissue. The ACAN hybrid hydrogels have advantages such as biocompatibility and antibacterial, hemostatic, and wound healing properties, shedding new light on first-aid tape design and advancing the cellulose-based materials technology for high-performance biomedical applications.


Asunto(s)
Celulosa , Quitosano , Hidrogeles , Cicatrización de Heridas , Quitosano/química , Quitosano/análogos & derivados , Celulosa/química , Celulosa/análogos & derivados , Celulosa/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reactivos de Enlaces Cruzados/química , Hemostáticos/química , Hemostáticos/farmacología , Humanos
3.
Int J Biol Macromol ; 258(Pt 2): 129107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159705

RESUMEN

A large number of polluting substances, including chlorinated organic substances that were highly stable and hazardous, has been emitted due to the rapidly developing chemical industry, which will affect the ecological environment. Nanocellulose aerogels are effective carriers for adsorption of oil substances and organic solvents, however, the extremely strong hydrophilicity and poor mechanical properties limited their widespread applications. In this study, TEMPO-oxidized cellulose nanofibrils was modified with 2, 4-toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) to prepare strong and hydrophobic aerogels for oil adsorption. The main purpose was to evaluate and compare the effects of two diisocyanates on various properties of modified aerogels. It was found that the modified aerogel had better hydrophobic properties, mechanical properties and adsorption properties. In particular, the modified aerogel with TDI as crosslinker showed a better performance, with a maximum chloroform adsorption capacity of 99.3 g/g, a maximum water contact angle of 131.3°, and a maximum compression stress of 36.3 kPa. This study provides further evidence of the potential of functional nanocellulose aerogel in addressing environmental pollution caused by industrial emissions.


Asunto(s)
Celulosa , 2,4-Diisocianato de Tolueno , Celulosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Adsorción , Solventes/química , Agua/química
4.
Int J Biol Macromol ; 268(Pt 2): 131945, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685544

RESUMEN

Hydroxypropyl cellulose (HPC) is a green thermochromic material in energy-saving buildings, anti-counterfeiting, and data security fields. However, the high lower critical solution temperature (LCST) of HPC, around 42 °C (higher than the human thermal comfort temperature), limits its thermochromic sensitivity, poor stability, and short lifespan. Herein, we developed a durable, high-performance cellulose-based thermochromic composite with a lower LCST and easy preparation capability by combining HPC with sodium carboxymethyl cellulose (CMC). In such thermochromic cellulose, CMC constructs a hydrophilic skeleton to enable uniform dispersion of HPC, and functions as a stronger competitor to attract the water molecules compared to HPC, both of which trigger high thermochromic sensitivity and low LCST (just 32.5 °C) of our CMC/HPC. In addition, CMC/HPC shows superior stability, such as 100-day working capability and 60-time recyclability. This advancement marks a significant step forward in creating sustainable, efficient thermochromic materials, offering new opportunities for energy conservation in the building.


Asunto(s)
Carboximetilcelulosa de Sodio , Celulosa , Temperatura , Carboximetilcelulosa de Sodio/química , Celulosa/química , Celulosa/análogos & derivados , Interacciones Hidrofóbicas e Hidrofílicas
5.
Int J Biol Macromol ; 226: 833-839, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521706

RESUMEN

Forward osmosis (FO) technology exhibits great potential in seawater desalination and wastewater treatment due to its negligible energy consumption and high antifouling, however, the weak desalination capability, especially low water flux, remains challenging. Herein, a cost-effective and high-desalination-performance chitosan (CS)-based FO membrane is developed via coupling the electrospinning CS nanofibers and interfacial-polymerized polyamide (PA). The electrospun nanofibers construct the porous and hydrophilic CS layer with the large pore-diameter of ~274 nm and low thickness of ~10 µm, enabling the effective transport of water molecules, specifically, a superhigh water flux of 107.53 LMH at a low salt-water ratio of 0.24 g·L-1. In addition, such superior desalination performance of the as-prepared FO membrane is universal for the various salt species and concentrations. Our CS nanofiber-based membrane with the high separation capability of water-salt, desirable antibacterial activity, as well as the low cost, offers a roadmap toward the sustainable membrane materials.


Asunto(s)
Quitosano , Nanofibras , Purificación del Agua , Agua , Membranas Artificiales , Ósmosis
6.
Int J Biol Macromol ; 238: 124031, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36933599

RESUMEN

Actuators are widely used in bionic devices and soft robots, among which invisible actuators have some unique applications, including performing secret missions. In this paper, highly visible transparent cellulose-based UV-absorbing films were prepared by dissolving cellulose raw materials using N-methylmorpholine-N-oxide (NMMO) and using ZnO nanoparticles as UV absorbers. Furthermore, transparent actuator was fabricated by growing highly transparent and hydrophobic polytetrafluoroethylene (PTFE) film on regenerated cellulose (RC)-ZnO composite film. In addition to its sensitive response to Infrared (IR) light, the as-prepared actuator also shows a highly sensitive response to UV light, which is attributed to the strong absorption of UV light by ZnO NPs. Thanks to the drastic differences in adsorption capacity between the RC-ZnO and PTFE materials for water molecules, the asymmetrically- assembled actuator demonstrates extremely high sensitivity and excellent actuation performance, with a force density of 60.5, a maximum bending curvature of 3.0 cm-1, and a response time of below 8 s. Bionic bug, smart door and the arm of excavator made from the actuator all exhibit sensitive responses to UV and IR lights.


Asunto(s)
Nanopartículas , Óxido de Zinc , Rayos Ultravioleta , Celulosa/química , Agua/química , Nanopartículas/química
7.
Int J Biol Macromol ; 201: 104-110, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998868

RESUMEN

Flexible hydrogels with integration of excellent mechanical and electrical properties are well suited for applications as wearable electronic sensors, and others. Self-adhesion is an important feature of wearable sensors. However, the usual isotropic- adhesion hydrogels have the drawback of poor anti-interference, which negatively affects their applications. In this study, we developed asymmetric-adhesion and tough lignin reinforced hydrogels in a facile two-step process: 1) PAA hydrogels, with lignin as the binder and conductive filler, were first prepared; 2) the asymmetric-adhesion property was imparted to lignin reinforced hydrogel by simple soaking of the top portion of the hydrogel in CaCl2 solution. The as-obtained asymmetric-adhesion lignin reinforced hydrogel was assembled into a wearable sensor, which shows excellent anti-interference and accurate and stable collections of sensing signals, with its gauge factor (GF) of 2.51 (in the strain range of 0-51.5%). In addition, the tough hydrogel is capable of generating electricity upon moist air sweeping through it, showing excellent energy conversion capabilities, with open-circuit voltage of as high as 306.6 mV. These results provided new prospects for the application of polyelectrolyte hydrogel materials in the fields of wet-to-electric conversion and wearable electronic sensors.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electricidad , Lignina
8.
Int J Biol Macromol ; 212: 275-282, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594941

RESUMEN

Soft and elastic polymer hydrogel materials are booming in the fields of wearable biomimetic skin, sensors, robotics, and bioelectrodes. Currently, many researchers are exploring new chemistries for the preparation of hydrogels to improve their performance. In the present study, we design and develop a strategy to prepare lignin reinforced hydrogels based on disulfide bond crosslinking mechanisms, and resultant hydrogels exhibit excellent stretchability, with tensile strain of up to 1085.4%, and high adhesion (with the highest T-peel strength of up to 432.2 N/m to pigskin). The underlying mechanism is based on the disulfide bonds that act as crosslinkers in the as-prepared hydrogel, and they can be easily cleaved and re-formed under mild conditions. Thanks to the presence of lignin, the as-obtained hydrogels also have excellent UV shielding effect. When assembled into a strain sensor, they can output stable and sensitive sensing signals, with gauge factor (GF) of 2.72 (strain: 0-72.8%). Furthermore, a simple and effective strategy to construct asymmetric adhesive hydrogels was adopted, which is based on directional soaking of the top portion of the hydrogel in a high-concentrated calcium chloride solution. The asymmetric hydrogel strain sensor transmits accurate and stable signals without the interference of various contaminants.


Asunto(s)
Hidrogeles , Lignina , Adhesivos/química , Disulfuros , Conductividad Eléctrica , Hidrogeles/química
9.
ACS Biomater Sci Eng ; 8(3): 1096-1102, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35213139

RESUMEN

Traditional adhesives with strong adhesion are widely applied in the fields of wood, building, and electronics. However, the synthesis and usage of commercial adhesives are not eco-friendly, which are harmful to human health and to the environment. In this study, a green cellulose nanofibrils/poly(hydroxyethyl methacrylate-co-dopamine methacrylamide) (CNFs/P(HEMA-co-DMA)) adhesive with excellent biocompatibility and strong bonding strength has been fabricated. P(HEMA-co-DMA) with a catechol content of 7.1 mol % was synthesized using dopamine methacrylamide and hydroxyethyl methacrylate. The CNFs/P(HEMA-co-DMA) adhesive was generated by cross-linking P(HEMA-co-DMA) solution using cellulose nanofibrils (CNFs). Strong adhesion was realized on various substrates, with a maximum lap shear strength of 5.50 MPa on steel. The NIH 3T3 cells test demonstrated that the adhesive possessed excellent biocompatibility. The green catechol-containing CNFs-cross-linked adhesive has promising potential for applications in medicine, electronic, food packaging, and engineering.


Asunto(s)
Adhesivos , Celulosa , Animales , Catecoles , Dopamina , Ingeniería , Humanos , Ratones
10.
Biomater Adv ; 136: 212765, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929329

RESUMEN

Hydrogels are functional materials that are similar to human skin and have received much attention in recent years for biomedical applications. However, the preparation of nontoxic, highly adhesive, and antimicrobial hydrogels in an efficient way remains a great challenge. Inspired by adhesive mussel foot proteins (mfps) which consist of abundant catecholic amino acids and lysine (Lys) residues, gallic acid-modified ε-poly-L-lysine (EPL/GA) was synthesized, and an active functional monomer (AA-EPL/GA) was then created through a reaction with acrylic acid (AA). The polymerization of AA-EPL/GA occurred rapidly (30-160 s) under blue light (λ = 405 nm) irradiation to produce a biomimetic PAA-EPL/GA hydrogel under mild conditions. The biomimetic pyrogallol-Lys distribution endowed the PAA-EPL/GA hydrogels with superior adhesion in humid environments (with an adhesive strength of 50.02 kPa toward wet porcine skin) and tunable mechanical and self-healing properties. Additionally, the PAA-EPL/GA hydrogels exhibited outstanding antibacterial ability due to the inherent characteristics of GA and EPL. In a mouse model, PAA-EPL/GA adhered firmly around the wound tissues. Photographs of the wound and the histological results demonstrated the ability of the hydrogel to promote wound healing, control wound infection, and suppress scar formation. Moreover, the hydrogel had a good hemostatic effect on liver bleeding. Our results highlighted the promising application potential of GA-based hydrogels, which were easily, harmlessly, and efficiently fabricated by blue light irradiation.


Asunto(s)
Hemostáticos , Hidrogeles , Adhesivos/farmacología , Animales , Antibacterianos/farmacología , Biónica , Hemostáticos/farmacología , Humanos , Hidrogeles/farmacología , Ratones , Pirogalol/química , Cementos de Resina , Porcinos , Cicatrización de Heridas
11.
Int J Biol Macromol ; 187: 189-199, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34265336

RESUMEN

Lignin, an abundant natural polymer but presently under-utilized, has received much attention for its green/sustainable advantages. Herein, we report a facile method to fabricate lignosulfonate (LS) ionic hydrogels by simple crosslinking with poly (ethylene glycol) diglycidyl ether (PEGDGE). The as-obtained LS-PEGDGE hydrogels were comprehensively characterized by mechanical measurements, FT-IR, and SEM. The rich sulfonic and phenolic hydroxyl groups in LS hydrogels play key roles in imparting multifunctional smart properties, such as adhesiveness, conducting, sensing and dye adsorption, as well as superconductive behavior when increasing the moisture content. The hydrogels have a high adsorption capacity for cationic dyes, using methylene blue as a model, reaching 211 mg·g-1. As a moist-induced power generator, the maximum output voltage is 181 mV. The LS-PEGDGE hydrogel-based flexible strain sensors exhibit high sensitivity when detecting human movements. As the hydrogel electrolyte, the assembled supercapacitor shows high specific capacitance of 236.9 F·g-1, with the maximum energy density of 20.61 Wh·kg-1, power density of 2306.4 W·kg-1, and capacitance retention of 92.9% after 10,000 consecutive charge-discharge cycles. Therefore, this multifunctional LS hydrogels may have promising applications in various fields, providing a new platform for the value-added utilization of lignin from industrial waste.


Asunto(s)
Colorantes/química , Capacidad Eléctrica , Resinas Epoxi/química , Hidrogeles/química , Lignina/análogos & derivados , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Lignina/química
12.
Int J Biol Macromol ; 185: 739-749, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34216674

RESUMEN

Nature provides rich bionic resources for the construction of advanced materials with excellent mechanical properties. In this work, inspired by animal tendons, a bionic collagen fiber was developed using collagen liquid crystals as the pre-oriented bioink. The texture of liquid crystalline collagen observed from polarized optical microscopy (POM) showed the specific molecular pre-orientation. Meanwhile, the collagen spinning liquids exhibited a minimal rise in viscosity upon increasing concentration from 60 to 120 mg/mL, indicating the feasible processability. The collagen fiber, which was prepared via wet spinning without being denatured, exhibited the favorable orientation of fibrils along its axis as observed with FESEM and AFM. Thanks to the synergistic effects between pre-orientation and shearing orientation, the maximum tensile strength and Young's modulus of collagen fibers reached 9.98 cN/tex (219.29 ± 22.92 MPa) and 43.95 ± 1.11 cN/tex (966.20 ± 24.30 MPa), respectively, which were also analogous to those of tendon. In addition, the collagen fiber possessed a desirable wet strength. Benefiting from the natural tissue affinity of collagen, the as-prepared bionic collagen fiber possessed excellent wound suture performance and biodegradability in vivo, which offers a new perspective for the potential of widespread applications of collagen fibers in biomedical fields.


Asunto(s)
Colágenos Fibrilares/farmacología , Cristales Líquidos/química , Tendones , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Módulo de Elasticidad , Colágenos Fibrilares/química , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción , Ingeniería de Tejidos , Viscosidad
13.
Carbohydr Polym ; 264: 117995, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33910731

RESUMEN

It is still a challenge to integrate high sensitivity, mechanical adaptability, and self-powered properties for hydrogels. Herein, we report a conductive polyvinyl alcohol (PVA) hydrogel based on natural nanoclay and cellulose nanofibrils (CNFs). The CNFs and PVA chains could construct a double network structure, resulting in a high mechanical composite hydrogel. Meanwhile, the nanoclay could be well dispersed and immobilized in the network of the hydrogel, thus improving mechanical adaptability of the hydrogel for curved and dynamic surfaces. Moreover, the conductive ions (Al3+) imparted the hydrogel with high conductivity (6.67 S m-1) and gauge factor (1.17). Therefore, the composite hydrogel exhibited high sensitivity to tiny pressure changes, enabling recognition of the complicated sounding and handwriting. More importantly, the composite hydrogel possessed self-powered property, which could generate an output voltage of up to 78 mV. In summary, the multi-functional composite hydrogel may have giant applications in artificial electronic skins or wearable devices.


Asunto(s)
Celulosa/química , Hidrogeles/química , Nanofibras/química , Alcohol Polivinílico/química , Aluminio/química , Materiales Biocompatibles/química , Arcilla/química , Conductividad Eléctrica , Humanos , Presión , Resistencia a la Tracción , Dispositivos Electrónicos Vestibles
14.
Carbohydr Polym ; 260: 117820, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712163

RESUMEN

A high-performance flexible conductive substrate is one of the key components for developing promising wearable devices. Concerning this, a sustainable, flexible, transparent, and conductive cellulose/ZnO/AZO (CZA) film was developed in this study. The cellulose was used as the transparent substrate. The added AZO was as the conductive layer and ZnO functioned as an interface buffer layer. Results showed that the interface buffer layer of ZnO effectively alleviated the intrinsic incompatibility of organic cellulose and inorganic AZO, resulting in the improvement of the performance of CZA film. In compared with the controlled cellulose/AZO (CA) film with 365 Ω/sq sheet resistance and 87% transmittance, this CZA film featured a low conductive sheet resistance of 115 Ω/sq and high transmittance of 89%, as well as low roughness of 1.85 nm Moreover, the existence of conducive ZnO buffer layer enabled the conductivity of CZA film to be stable under the bending treatment. Herein, a flexible electronic device was successfully prepared with the biomass materials, which would be available by a roll-to-roll production process.


Asunto(s)
Celulosa/química , Electrónica , Aluminio/química , Conductividad Eléctrica , Óxido de Zinc/química
15.
Int J Biol Macromol ; 144: 127-134, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837365

RESUMEN

Inspired by marine mussel, catechol-containing materials, such as adhesives, self-healing hydrogels, and antifouling coatings, have been developed with wide applications in chemical, biomedical, and electronics industries. Conventionally, petrochemicals or organic solvents are widely used for preparation and dissolution of adhesives, which makes the adhesives are not eco-friendly and biocompatible. To develop environmentally friendly and biocompatible adhesives with desired properties, here we report catechol-containing cellulose-based tissue adhesives, synthesized by incorporating catechol groups onto cellulose. The structures of the adhesives with different catechol contents were analyzed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The adhesion strengths were examined using porcine skin by lap shear tensile tests. The adhesion strength of the as-prepared adhesive with catechol content of 16.5 mol% was 20.0 kPa. Fe3+ was used as crosslinker to enhance the adhesion strength and accelerate the solidification of adhesives. Through the Fe3+-catechol coordination, the adhesion strength of adhesive was increased to 88.0 kPa, showing strong mechanical strength compared to the fibrin adhesive. NIH 3T3 cells test demonstrates that the adhesive is favorable for cell attachment and proliferation, possessing excellent biocompatibility. The catechol-containing cellulose-based adhesive has promising application in bioengineering field.


Asunto(s)
Materiales Biocompatibles/química , Biomimética , Bivalvos/química , Celulosa/química , Ensayo de Materiales , Metales/química , Adhesivos Tisulares/química , Animales , Catecoles/química , Supervivencia Celular , Ratones , Células 3T3 NIH , Porcinos , Termogravimetría
16.
Carbohydr Polym ; 215: 358-365, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981365

RESUMEN

Hyaluronic acid (HA) is a natural polysaccharide possesses outstanding physiological activities. In this work, HA was activated as a novel collagen modifier via the esterification reaction between N-hydroxysuccinimide (NHS) and the carboxyl groups of HA. Both of Fourier transform infrared spectroscopy (FTIR) and 1H- nuclear magnetic resonance (NMR) spectra indicated the successful synthesis of HA-NHS esters. As reflected by FTIR, circular dichroism (CD) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), collagens modified with HA-NHS ester maintained its intact triplex structure with larger molecular weight. The resultant polyanionic collagen displayed an excellent dissolubility in the neutral water to form a clear solution, due to the significantly lower isoelectric point values (3.8-4.4) compared with that of the native collagen (7.1). In addition, the thermal transition temperature of collagen was significantly increased (16 °C) after modifying with HA-NHS esters. Both of the aggregation morphology and rheological property exhibited high dependence on the NHS/COOH ratio of HA-NHS esters, as reflected by field-emission scanning electron microscopy (FESEM) and rheological test, respectively. The present study offered a novel dual-functional modifier based on the design of HA-NHS ester to obtain water-soluble collagen with desired thermal stability and rheological property, which will significantly widen the application range of collagen, especially in the fields of injectable biodegradable materials and cosmetics.


Asunto(s)
Colágeno/química , Ésteres/química , Ácido Hialurónico/química , Polímeros/química , Punto Isoeléctrico , Polielectrolitos , Solubilidad , Viscosidad
17.
Sci Total Environ ; 664: 363-373, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743128

RESUMEN

Bamboo-derived biocarbon (BA900) and wood-derived biocarbon (THOC700) have exhibited graphite-like characteristics through transmission electron microscopy, X-ray diffraction (XRD), and Attenuated Total Reflectance (ATR) spectroscopy analysis. Lightweight composites of biocarbons were manufactured by a mechanism of shear controlled melt-phase mixing, ensuring the preservation of biocarbon pore structures and simultaneously taking full advantage of low density polyolefin substrates. Effective tensile strength was improved by approximately 10% in the polypropylene-based bamboo carbon composite, whereas no appreciable improvement was observed in the tensile and impact strength of bamboo-derived biocarbon formulations compared to neat polymer. However, the tensile and flexural moduli and flexural strength of the THOC700-PP composites were significantly enhanced, by 56%, 67%, and 19%, respectively, compared to neat polymer. The most significant finding of the investigation was the retention of density in polyolefin polymer (ρPP = 0.91; ρTHOC = 0.95; ρBA900 = 0.99), with enhanced mechanical performance useful for lightweighting applications. Bamboo biocarbon provides a viable alternative to another abundantly available industrial carbon feedstock, reclaimed carbon fiber (RCF), in manufacturing thermoplastic composites. The origin of the carbon plays an important role in defining ultimate composite performance. A mechanism for retaining lightweight structural performance has been proposed in this original work, paving the way to develop next-generation lightweight thermoplastic structures for transportation and other industrial and consumer products.


Asunto(s)
Fibra de Carbono , Materiales de Construcción , Carbono , Grafito , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Polímeros , Polipropilenos , Porosidad , Resistencia a la Tracción , Madera , Difracción de Rayos X
18.
Bioresour Technol ; 251: 1-6, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29253781

RESUMEN

The effective separations of cellulose and hemicelluloses from cellulosic fibers are the prerequisite for creating high-value to the abundant and green cellulose materials. In this study, the process concept of cellulase pretreatment, followed by a cold caustic extraction (CCE) was investigated for a softwood sulfite pulp. The results showed that the cellulase pretreatment led to favorable fiber morphological changes, including the increases of the specific surface area (SSA), pore volume and diameter, and the water retention value (WVR). These changes can induce more pronounced fiber swelling in the subsequent CCE process so that the hemicelluloses removal is enhanced. After the cellulase pretreatment (cellulase dosage of 1 mg/g) and CCE process, the cellulose purity was as high as 97.49%, while the hemicelluloses removal selectivity reached 76.42%.


Asunto(s)
Celulasa , Polisacáridos , Madera , Cáusticos , Celulosa , Hidrólisis
19.
Bioresour Technol ; 234: 61-66, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28319774

RESUMEN

The effective separation of hemicelluloses and cellulose is desirable for the production of high-purity cellulose, which is a sustainable raw material for many value-added applications. For this purpose, the kinetics and mechanism of hemicelluloses removal from the cold caustic extraction (CCE) were investigated in the present study. The hemicelluloses removal process consists of: 1) the bulk phase, characteristic of significant hemicelluloses removal; 2) the transition phase, hemicelluloses transferring from the inner to the outer region of the fiber wall, with negligible overall hemicelluloses removal; 3) the residual phase, presenting a weak but continuing hemicelluloses removal. Furthermore, the enzymatic peeling method was adopted to study the fundamentals of hemicelluloses removal. The results showed that the molecular weight of hemicelluloses is the main parameter governing their diffusion/dissolution processes, and that the low molecular weight hemicelluloses are preferentially removed.


Asunto(s)
Celulosa/química , Cáusticos , Difusión , Cinética , Peso Molecular , Polisacáridos
20.
Carbohydr Polym ; 151: 1115-1119, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27474662

RESUMEN

A multi-functional adsorbent was prepared by modifying nanofibrillated cellulose/chitosan composites with ethylenediamine (E-NFC/CS). The E-NFC/CS was characterized by FTIR and used for adsorption of cationic dye methylene blue (MB) and anionic dye new coccine (NC) from aqueous solution. The FTIR results showed that the E-NFC/CS contained more amino groups than the NFC/CS due to the modification for the NFC/CS with ethylenediamine. The results indicated that the maximum adsorption capacities occurred at pH 4.0 for MB and pH 2.0 for NC, respectively. The adsorption equilibrium time for MB and NC was 30 and 50min, respectively. In addition, the regenerated E-NFC/CS exhibited excellent adsorption performance for NC. It can keep almost 98% of the adsorption capacity after reused three times. Therefore, the E-NFC/CS can be potentially used as an effective adsorbent of cationic and anionic dyes in industrial effluents.


Asunto(s)
Compuestos Azo/química , Celulosa/química , Quitosano/química , Etilenodiaminas/química , Azul de Metileno/química , Nanoestructuras/química , Naftalenosulfonatos/química , Agua/química , Adsorción , Compuestos Azo/aislamiento & purificación , Colorantes/química , Colorantes/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/aislamiento & purificación , Naftalenosulfonatos/aislamiento & purificación , Soluciones , Temperatura , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA