Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(11): 5067-5073, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258954

RESUMEN

Aggregation of amyloidogenic proteins causing neurodegenerative diseases is an uncontrollable and contagious process that is often associated with lipid membranes in a highly complex physiological environment. Although several approaches using natural cells and membrane models have been reported, systematic investigations focusing on the association with the membranes are highly challenging, mostly because of the lack of proper molecular tools. Here, we report a new supramolecular approach using a synthetic cell system capable of controlling the initiation of protein aggregation and mimicking various conditions of lipid membranes, thereby enabling systematic investigations of membrane-dependent effects on protein aggregation by visualization. Extending this strategy through concurrent use of synthetic cells and natural cells, we demonstrate the potential of this approach for systematic and in-depth studies on interrogating inter- and intracellularly transmittable protein aggregation. Thus, this new approach offers opportunities for gaining insights into the pathological implications of contagious protein aggregation associated with membranes for neurotoxicity.


Asunto(s)
Células Artificiales , Proteínas Amiloidogénicas/metabolismo , Membrana Celular/metabolismo , Humanos , Lípidos , Agregado de Proteínas , Agregación Patológica de Proteínas
2.
Angew Chem Int Ed Engl ; 54(9): 2693-7, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25612160

RESUMEN

A facile method has been developed for synthesizing polymer nanocapsules and thin films using multiple in-plane stitching of monomers by the formation of reversible disulfide linkages. Owing to the reversibility of the disulfide linkages, the nanostructured materials readily transform their structures in response to environmental changes at room temperature. For example, in reducing environments, the polymer nanocapsules release loaded cargo molecules. Moreover, reversible morphological transformations between these structures can be achieved by simple solvent exchanges. This work is a novel approach for the formation of robust nano/microstructured materials that dynamically respond to environmental stimuli.


Asunto(s)
Disulfuros/química , Nanocápsulas/química , Polímeros/síntesis química , Termodinámica , Conformación Molecular , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
3.
Nat Commun ; 13(1): 2372, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501325

RESUMEN

Spatiotemporal control of chemical cascade reactions within compartmentalized domains is one of the difficult challenges to achieve. To implement such control, scientists have been working on the development of various artificial compartmentalized systems such as liposomes, vesicles, polymersomes, etc. Although a considerable amount of progress has been made in this direction, one still needs to develop alternative strategies for controlling cascade reaction networks within spatiotemporally controlled domains in a solution, which remains a non-trivial issue. Herein, we present the utilization of audible sound induced liquid vibrations for the generation of transient domains in an aqueous medium, which can be used for the control of cascade chemical reactions in a spatiotemporal fashion. This approach gives us access to highly reproducible spatiotemporal chemical gradients and patterns, in situ growth and aggregation of gold nanoparticles at predetermined locations or domains formed in a solution. Our strategy also gives us access to nanoparticle patterned hydrogels and their applications for region specific cell growth.


Asunto(s)
Oro , Nanopartículas del Metal , Liposomas , Sonido , Vibración
4.
Nat Chem ; 6(2): 97-103, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24451584

RESUMEN

Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.


Asunto(s)
Nanotubos/química , Polímeros/química , Alquenos/química , Antraquinonas/química , Fulerenos/química , Luz , Nanopartículas del Metal/química , Modelos Teóricos , Nanotubos/ultraestructura , Nanotubos de Carbono/química , Polimerizacion , Plata/química , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA