Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(31): 37274-37289, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499236

RESUMEN

We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteogénesis , Animales , Ratones , Titanio/farmacología , Antibacterianos/farmacología , Staphylococcus aureus , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Regeneración Ósea , Materiales Biocompatibles Revestidos/farmacología , Propiedades de Superficie
2.
ACS Appl Bio Mater ; 5(12): 5595-5607, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36479940

RESUMEN

The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.


Asunto(s)
Escherichia coli , Nanopartículas , Fibra de Algodón , Calor , DEET , Textiles , Antibacterianos/farmacología , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Celulosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA