Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Tissue Eng Part A ; 16(11): 3395-402, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20528670

RESUMEN

Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO(2)-reinforced PED (PED-TiO(2)). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO(2) material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.


Asunto(s)
Materiales Biocompatibles/farmacología , Elastómeros/farmacología , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Andamios del Tejido/química , Remodelación Ventricular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Miocardio/patología , Ratas , Ingeniería de Tejidos
2.
Biomaterials ; 31(14): 3885-93, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20153041

RESUMEN

We hypothesize that a combinatorial approach of ventricle constraint and stem cell therapy would offer a greater benefit for the treatment of heart failure than either strategy alone. A heart patch would serve two therapeutic purposes: biomechanical support and cell delivery. In this study, we describe a hybrid heart patch engineered from a synthetic elastomer, poly(glycerol sebacate) (PGS), supplemented with cardiomyocytes differentiated from human embryonic stem cells (hESCs). In line with two therapeutically relevant considerations, i.e. biocompatibility and cell delivery efficiency, the PGS was (a) pre-conditioned in culture medium for 6 days, and (b) prepared without gelatin coatings to facilitate detachment and delivery of cardiomyocytes following patch implantation. Following pre-conditioning under physiological conditions, the PGS patch material without gelatin coating was found to satisfactorily support cardiomyocyte viability and attachment, with active cell beating for periods of longer than 3 months until interrupted. Dynamic culture studies revealed that cells detached more efficiently from the uncoated surface of PGS than from gelatin-coated PGS. No significant differences were detected between the beating rates of human embryonic stem cell-derived cardiomyocytes on tissue culture plate and the pre-conditioned and gelatin-uncoated PGS. PGS patches sutured over the left ventricle of rats in vivo remained intact over a 2 week period without any deleterious effects on ventricular function. We conclude that PGS is a suitable biomaterial for stem cell-based regeneration strategies to restore cardiomyocyte function, and the hybrid heart patch engineered under optimal conditions would be a promising support device for the cardiac repair.


Asunto(s)
Decanoatos/farmacología , Elastómeros/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Glicerol/análogos & derivados , Miocardio/citología , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Ácidos , Envejecimiento , Animales , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Decanoatos/toxicidad , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glicerol/farmacología , Glicerol/toxicidad , Humanos , Cinética , Ensayo de Materiales , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polímeros/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA