Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 450(7169): 560-5, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-18033299

RESUMEN

From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.


Asunto(s)
Bacterias/metabolismo , Genoma Bacteriano/genética , Genómica , Intestinos/microbiología , Isópteros/metabolismo , Isópteros/microbiología , Madera/metabolismo , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Fuentes de Energía Bioeléctrica , Carbono/metabolismo , Dominio Catalítico , Celulosa/metabolismo , Costa Rica , Genes Bacterianos/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Lignina/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Simbiosis , Madera/química , Xilanos/metabolismo
2.
Nature ; 443(7114): 950-5, 2006 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-16980956

RESUMEN

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.


Asunto(s)
Genómica , Oligoquetos/microbiología , Oligoquetos/fisiología , Proteobacteria/genética , Proteobacteria/metabolismo , Simbiosis/genética , Simbiosis/fisiología , Animales , Carbono/metabolismo , Digestión/fisiología , Metabolismo Energético , Ambiente , Microbiología , Modelos Biológicos
3.
Microbiol Spectr ; 10(3): e0234621, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35579457

RESUMEN

Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.


Asunto(s)
Enterobacteriaceae , Lignina , Anaerobiosis , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterobacteriaceae/genética , Lignina/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
4.
J Bacteriol ; 193(11): 2906-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21460082

RESUMEN

Clostridium thermocellum DSM1313 is a thermophilic, anaerobic bacterium with some of the highest rates of cellulose hydrolysis reported. The complete genome sequence reveals a suite of carbohydrate-active enzymes and demonstrates a level of diversity at the species level distinguishing it from the type strain ATCC 27405.


Asunto(s)
Clostridium thermocellum/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Anaerobiosis , Celulosa/metabolismo , Clostridium thermocellum/metabolismo , Clostridium thermocellum/fisiología , Calor , Datos de Secuencia Molecular
5.
ISME J ; 14(3): 659-675, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31754206

RESUMEN

Assigning a functional role to a microorganism has historically relied on cultivation of isolates or detection of environmental genome-based biomarkers using a posteriori knowledge of function. However, the emerging field of function-driven single-cell genomics aims to expand this paradigm by identifying and capturing individual microbes based on their in situ functions or traits. To identify and characterize yet uncultivated microbial taxa involved in cellulose degradation, we developed and benchmarked a function-driven single-cell screen, which we applied to a microbial community inhabiting the Great Boiling Spring (GBS) Geothermal Field, northwest Nevada. Our approach involved recruiting microbes to fluorescently labeled cellulose particles, and then isolating single microbe-bound particles via fluorescence-activated cell sorting. The microbial community profiles prior to sorting were determined via bulk sample 16S rRNA gene amplicon sequencing. The flow-sorted cellulose-bound microbes were subjected to whole genome amplification and shotgun sequencing, followed by phylogenetic placement. Next, putative cellulase genes were identified, expressed and tested for activity against derivatives of cellulose and xylose. Alongside typical cellulose degraders, including members of the Actinobacteria, Bacteroidetes, and Chloroflexi, we found divergent cellulases encoded in the genome of a recently described candidate phylum from the rare biosphere, Goldbacteria, and validated their cellulase activity. As this genome represents a species-level organism with novel and phylogenetically distinct cellulolytic activity, we propose the name Candidatus 'Cellulosimonas argentiregionis'. We expect that this function-driven single-cell approach can be extended to a broad range of substrates, linking microbial taxonomy directly to in situ function.


Asunto(s)
Bacterias/metabolismo , Celulosa/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulasa/genética , Celulasa/metabolismo , Microbiología Ambiental , Genoma Bacteriano , Genómica , Metagenómica , Filogenia , ARN Ribosómico 16S/genética
6.
Nat Biotechnol ; 36(4): 359-367, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553575

RESUMEN

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.


Asunto(s)
Archaea/genética , Bacterias/genética , Microbioma Gastrointestinal/genética , Rumen/microbiología , Animales , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biocombustibles , Humanos , Lignina/química , Lignina/genética , Microbiota/genética
7.
Front Microbiol ; 7: 2003, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066339

RESUMEN

The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.

8.
PLoS One ; 8(4): e61126, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593407

RESUMEN

Termites effectively feed on many types of lignocellulose assisted by their gut microbial symbionts. To better understand the microbial decomposition of biomass with varied chemical profiles, it is important to determine whether termites harbor different microbial symbionts with specialized functionalities geared toward different feeding regimens. In this study, we compared the microbiota in the hindgut paunch of Amitermes wheeleri collected from cow dung and Nasutitermes corniger feeding on sound wood by 16S rRNA pyrotag, comparative metagenomic and metatranscriptomic analyses. We found that Firmicutes and Spirochaetes were the most abundant phyla in A. wheeleri, in contrast to N. corniger where Spirochaetes and Fibrobacteres dominated. Despite this community divergence, a convergence was observed for functions essential to termite biology including hydrolytic enzymes, homoacetogenesis and cell motility and chemotaxis. Overrepresented functions in A. wheeleri relative to N. corniger microbiota included hemicellulose breakdown and fixed-nitrogen utilization. By contrast, glycoside hydrolases attacking celluloses and nitrogen fixation genes were overrepresented in N. corniger microbiota. These observations are consistent with dietary differences in carbohydrate composition and nutrient contents, but may also reflect the phylogenetic difference between the hosts.


Asunto(s)
Heces/parasitología , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Isópteros/microbiología , Metagenoma/genética , Metagenómica , Madera/parasitología , Animales , Bacterias/genética , Bacterias/metabolismo , Bovinos , Pared Celular/metabolismo , Quimiotaxis/genética , Conducta Alimentaria , Glicósido Hidrolasas/metabolismo , Isópteros/enzimología , Isópteros/genética , Lignina/metabolismo , Nitrógeno/metabolismo , Filogenia , Células Vegetales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
PLoS One ; 7(6): e39331, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723998

RESUMEN

Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.


Asunto(s)
Actinobacteria/genética , Actinobacteria/metabolismo , Celulosa/metabolismo , Genómica , Transportadoras de Casetes de Unión a ATP/genética , Actinobacteria/clasificación , Aerobiosis , Celulasa/genética , Celulasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Orden Génico , Genómica/métodos , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Operón , Filogenia , Transcripción Genética
10.
PLoS One ; 6(4): e18814, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21526192

RESUMEN

Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.


Asunto(s)
Celulosa/metabolismo , Fibrobacter/genética , Fibrobacter/metabolismo , Genoma Bacteriano/genética , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Transporte Biológico , Celulasa/metabolismo , Esterasas/metabolismo , Fibrobacter/enzimología , Genes Bacterianos/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Filogenia , Polisacáridos Bacterianos/metabolismo , Proteoma/clasificación , Rumen/microbiología
11.
Stand Genomic Sci ; 2(1): 57-65, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21304678

RESUMEN

Veillonella parvula (Veillon and Zuber 1898) Prévot 1933 is the type species of the genus Veillonella in the family Veillonellaceae within the order Clostridiales. The species V. parvula is of interest because it is frequently isolated from dental plaque in the human oral cavity and can cause opportunistic infections. The species is strictly anaerobic and grows as small cocci which usually occur in pairs. Veillonellae are characterized by their unusual metabolism which is centered on the activity of the enzyme methylmalonyl-CoA decarboxylase. Strain Te3(T), the type strain of the species, was isolated from the human intestinal tract. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the large clostridial family Veillonellaceae, and the 2,132,142 bp long single replicon genome with its 1,859 protein-coding and 61 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

12.
Stand Genomic Sci ; 3(1): 76-84, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-21304694

RESUMEN

Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study was isolated from human gingival crevices. This is the first completed sequence of the genus Olsenella and the fifth sequence from a member of the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

13.
Stand Genomic Sci ; 1(2): 93-100, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21304644

RESUMEN

Cryptobacterium curtum Nakazawa etal. 1999 is the type species of the genus, and is of phylogenetic interest because of its very distant and isolated position within the family Coriobacteriaceae. C. curtum is an asaccharolytic, opportunistic pathogen with a typical occurrence in the oral cavity, involved in dental and oral infections like periodontitis, inflammations and abscesses. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the actinobacterial family Coriobacteriaceae, and this 1,617,804 bp long single replicon genome with its 1364 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

14.
Biomaterials ; 29(31): 4149-56, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18678403

RESUMEN

This paper describes the preparation of oxidized hyaluronan crosslinked gelatin microspheres for drug delivery. Microspheres were prepared by a modified water-in-oil-emulsion crosslinking method, where three-dimensional crosslinked hydrogel microspheres formed in the absence of any extraneous crosslinker. SEM analyses of the microspheres showed rough surfaces in their dried state with an average diameter of 90 microm. Lyophilization of fully swollen microspheres revealed a highly porous structure. Guanidinoethyl disulfide (GED) was used as a model drug for incorporation into the microspheres; encapsulation of GED was confirmed by HPLC. There was an inverse correlation between the diameters of the microspheres with their GED loading. Macrophage was used as a model cell to evaluate the in vitro efficacy of GED release from the microspheres. The in vivo efficacy of the microspheres was further validated in a mouse full-thickness transcutaneous dermal wound model through suppression of cell infiltration.


Asunto(s)
Gelatina/metabolismo , Guanidinas/farmacología , Ácido Hialurónico/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Microesferas , Animales , Línea Celular , Forma de la Célula/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Guanidinas/química , Ratones , Microscopía Electrónica de Rastreo , Oxidación-Reducción/efectos de los fármacos , Tamaño de la Partícula , Piel/patología
15.
Anal Chem ; 79(14): 5173-80, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17567101

RESUMEN

The main objective of the present paper was to test the recently developed new type of 3-D protein microarray system based on glycidyl methacrylate-co-ethylene glycol dimethacrylate (GMA-EDMA) monolithic material for efficient and fast virus detection. The large-size synthetic particles bearing adsorption-responsible biomolecules on their surface were used as a virus model. Two affinity pairs were chosen for present study. Model virus-like particles, close to the dimensions of human viruses, were developed by means of protein (one of affinity partners) covalent binding to the outer carboxylated surface of polymer latexes (polystyrene based, 80-nm diameter). Recently, it was shown that the adsorption of similar synthetic particles was defined by a protein covering the particle surface. The corresponding complement was immobilized on the surface of prepared by photoinitiated polymerization GMA-EDMA macroporous layers. The detection of a formed biocomplementary complex between protein-bearing latex particle and immobilized affinity partner was carried out by two different methods: (1) similar to an ELISA approach using horse radish peroxidase conjugated with monoclonal antibodies and (2) direct method using two markers. In parallel, the pairing of native proteins was also evaluated. The adsorption behavior of studied particles has been additionally investigated by affinity adsorption at static and dynamic (frontal elution) conditions using the same GMA-EDMA material shaped as a short monolithic column (CIM Disk, BIA Separations, Ljubljana, Slovenia). The results obtained for these virus-mimicking supramolecular structures can be further used for the construction of a rapid, highly sensitive, and highly specific test intended for precise diagnostics of some respiratory tract infection viruses.


Asunto(s)
Metilmetacrilatos/química , Análisis por Matrices de Proteínas/métodos , Proteínas Virales/análisis , Virión/aislamiento & purificación , Anticuerpos Monoclonales/química , Peroxidasa de Rábano Silvestre/química , Humanos , Látex/química , Tamaño de la Partícula , Proteínas Virales/inmunología
16.
J Bacteriol ; 189(6): 2477-86, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17209016

RESUMEN

Thermobifida fusca is a moderately thermophilic soil bacterium that belongs to Actinobacteria. It is a major degrader of plant cell walls and has been used as a model organism for the study of secreted, thermostable cellulases. The complete genome sequence showed that T. fusca has a single circular chromosome of 3,642,249 bp predicted to encode 3,117 proteins and 65 RNA species with a coding density of 85%. Genome analysis revealed the existence of 29 putative glycoside hydrolases in addition to the previously identified cellulases and xylanases. The glycosyl hydrolases include enzymes predicted to exhibit mainly dextran/starch- and xylan-degrading functions. T. fusca possesses two protein secretion systems: the sec general secretion system and the twin-arginine translocation system. Several of the secreted cellulases have sequence signatures indicating their secretion may be mediated by the twin-arginine translocation system. T. fusca has extensive transport systems for import of carbohydrates coupled to transcriptional regulators controlling the expression of the transporters and glycosylhydrolases. In addition to providing an overview of the physiology of a soil actinomycete, this study presents insights on the transcriptional regulation and secretion of cellulases which may facilitate the industrial exploitation of these systems.


Asunto(s)
Actinomycetales/enzimología , Actinomycetales/genética , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Genoma Bacteriano , Análisis de Secuencia de ADN , Microbiología del Suelo , Actinomycetales/metabolismo , Proteínas Bacterianas/genética , Celulasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Datos de Secuencia Molecular
17.
Proc Natl Acad Sci U S A ; 104(29): 11889-94, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17620602

RESUMEN

We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Boca/microbiología , Adulto , Bacterias/citología , Mapeo Cromosómico , Genes Bacterianos , Humanos , Masculino , Microfluídica , Filogenia , Homología de Secuencia de Ácido Nucleico
18.
Genome Res ; 13(6A): 1180-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12799352

RESUMEN

We present the draft genome sequence and its analysis for Fusobacterium nucleatum sub spp. vincentii (FNV), and compare that genome with F. nucleatum ATCC 25586 (FN). A total of 441 FNV open reading frames (ORFs) with no orthologs in FN have been identified. Of these, 118 ORFs have no known function and are unique to FNV, whereas 323 ORFs have functional orthologs in other organisms. In addition to the excretion of butyrate, H2S and ammonia-like FN, FNV has the additional capability to excrete lactate and aminobutyrate. Unlike FN, FNV is likely to incorporate galactopyranose, galacturonate, and sialic acid into its O-antigen. It appears to transport ferrous iron by an anaerobic ferrous transporter. Genes for eukaryotic type serine/threonine kinase and phosphatase, transpeptidase E-transglycosylase Pbp1A are found in FNV but not in FN. Unique ABC transporters, cryptic phages, and three types of restriction-modification systems have been identified in FNV. ORFs for ethanolamine utilization, thermostable carboxypeptidase, gamma glutamyl-transpeptidase, and deblocking aminopeptidases are absent from FNV. FNV, like FN, lacks the classical catalase-peroxidase system, but thioredoxin/glutaredoxin enzymes might alleviate oxidative stress. Genes for resistance to antibiotics such as acriflavin, bacitracin, bleomycin, daunorubicin, florfenicol, and other general multidrug resistance are present. These capabilities allow Fusobacteria to survive in a mixed culture in the mouth.


Asunto(s)
Fusobacterium nucleatum/genética , Genoma Bacteriano , Transportadoras de Casetes de Unión a ATP/metabolismo , Aminoácidos/biosíntesis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Carbono/metabolismo , División Celular/genética , Reparación del ADN/genética , Replicación del ADN/genética , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/genética , Metabolismo Energético/genética , Fusobacterium nucleatum/enzimología , Fusobacterium nucleatum/metabolismo , Fusobacterium nucleatum/patogenicidad , Proteínas de Choque Térmico , Lípidos/biosíntesis , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/genética , Biosíntesis de Péptidos/genética , Péptido Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , ARN Bacteriano/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Transducción de Señal/genética , Especificidad de la Especie
19.
J Bacteriol ; 184(7): 2005-18, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11889109

RESUMEN

We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite (http://www.integratedgenomics.com). The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H(2)S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth.


Asunto(s)
Fusobacterium nucleatum/genética , Genoma Bacteriano , Biosíntesis de Proteínas , Transcripción Genética , Aminoácidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , División Celular , Coenzimas/metabolismo , Reparación del ADN , Replicación del ADN , Elementos Transponibles de ADN , ADN Bacteriano/análisis , Farmacorresistencia Bacteriana , Fusobacterium nucleatum/metabolismo , Metabolismo de los Lípidos , Lipopolisacáridos/metabolismo , Mutagénesis Insercional , Nucleótidos/metabolismo , Protones , Transducción de Señal/fisiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA