Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anaerobe ; 80: 102698, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36681234

RESUMEN

OBJECTIVE: Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS: Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 µg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS: HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 µg/ml, while below 1.25 µg/ml and above 10 µg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS: HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.


Asunto(s)
Hidrocortisona , Porphyromonas gingivalis , Hidrocortisona/farmacología , Hidrocortisona/metabolismo , Porphyromonas gingivalis/genética , Factores de Virulencia/genética
2.
Int J Mol Sci ; 21(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370039

RESUMEN

It was hypothesized that strontium (Sr)-doped ß-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed ß-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the ß-TCP + Sr group in the latter stage (day 40-60). VEGFR-2 activity increased in the + Sr group from days 0-15 but decreased and showed significantly less activity than the ß-TCP and non-scaffold groups from days 40-60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the ß-TCP group, whereas the percentage of osseous tissue formation in the ß-TCP group was significantly higher than in the ß-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.


Asunto(s)
Fosfatos de Calcio/química , FN-kappa B/genética , Fosfatidiletanolaminas/química , Regiones Promotoras Genéticas , Estroncio/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Regeneración Ósea , Sustitutos de Huesos , Huesos/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Andamios del Tejido , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Biomater Adv ; 164: 213984, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153456

RESUMEN

Magnesium is the most promising absorbable metallic implant material for bone regeneration and alloy WE43 is already FDA approved for cardiovascular applications. This study investigates the cyto- and biocompatibility of novel additively manufactured (AM) porous WE43 scaffolds as well as their osteogenic potential and degradation characteristics in an orthotopic canine bone defect model. The cytocompatibility was demonstrated using modified ISO 10993-conform extract-based indirect and direct assays, respectively. Additionally, degradation rates of WE43 scaffolds were quantified in vitro prior to absorption tests in vivo. Complete blood cell counts, blood biomarker analyses, blood trace element analyses as well as multi-organ histopathology demonstrated excellent biocompatibility of porous y WE43 scaffolds for bone defect repair. Micro-CT analyses further showed a relatively higher absorption rate during the initial four weeks upon implantation (i.e., 36 % ± 19 %) than between four and 12 weeks (41 % ± 14 %), respectively. Of note, the porous WE43 implants were surrounded by newly formed bony tissue as early as four weeks after implantation when unmineralized trabecular ingrowth was detected. After 12 weeks, a substantial amount of mineralized bone was detected inside and around the gradually disappearing implants. This first study on AM porous WE43 implants in canine bone defects demonstrates the potential of this alloy for in vivo applications in humans. Our data further underscore the need to control initial bulk absorption kinetics through surface modifications.


Asunto(s)
Osteogénesis , Andamios del Tejido , Animales , Perros , Andamios del Tejido/química , Porosidad , Osteogénesis/efectos de los fármacos , Ensayo de Materiales/métodos , Materiales Biocompatibles/farmacología , Implantes Absorbibles , Microtomografía por Rayos X , Aleaciones/química , Regeneración Ósea/efectos de los fármacos , Magnesio/química
4.
Ann Anat ; 246: 152023, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36400339

RESUMEN

Porphyromonas gingivalis lipopolysaccharide (PG-LPS) is an important virulence factor potentially contributing to periodontal tissue destruction. Toll-like receptor 4 (Tlr4) is a key mediator of NF-kB activation during pathogen recognition. Previous work using Tlr4-specific antibodies demonstrated a partial neutralization of PG-LPS effects on murine cementoblasts, which can affect cell function and regulate gene expression of osteoclastic markers. PG-LPS also potentially influence the inflammation process and the resorption of mineralized tissues. Yet, such inflammatory responses and cell signaling events remain to be characterized at the protein level. We thus investigated the effect of 1 and 10 µg/ml of PG-LPS, respectively, on cell morphology, cell viability, and selected key downstream molecules of the Tlr4 signaling cascade in cementoblasts. High concentrations of PG-LPS (10 µg/ml) significantly reduced cell viability after 48 h. Upon PG-LPS-stimulation, Tlr4 was significantly downregulated. Equally, IκBα, a downstream molecule, was downregulated in terms of phosphorylation and protein production. Furthermore, downstream signaling kinases, like serine/threonine kinase phospho-AKT and the mitogen-activated protein kinase (MAPK)-family, specifically phospho-ERK1/2, were significantly upregulated under high PG-LPS-concentrations. We provide new insights into PG-LPS-triggered intracellular signaling pathways in cementoblasts and thus deliver a basis for further research in PG-mediated periodontal inflammation.


Asunto(s)
Lipopolisacáridos , Porphyromonas gingivalis , Proteínas Proto-Oncogénicas c-akt , Receptor Toll-Like 4 , Animales , Ratones , Cemento Dental/metabolismo , Inflamación , Lipopolisacáridos/toxicidad , Fosforilación , Porphyromonas gingivalis/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo
5.
Acta Biomater ; 115: 29-50, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853809

RESUMEN

Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented opportunities for fulfilling the requirements of an ideal bone implant. First, the multi-scale geometry of these implants can be customized to mimic the human bone in terms of both micro-architecture and mechanical properties. Second, a porous structure with interconnected pores possesses a large surface area, which is favorable for the adhesion and proliferation of cells and, thus, bony ingrowth. Finally, the freeform geometrical design of such biomaterials could be exploited to adjust their biodegradation behavior so as to maintain the structural integrity of the implant during the healing process while ensuring that the implant disappears afterwards, paving the way for full bone regeneration. While the AM biodegradable porous metals that have been studied so far have shown many unique properties as compared to their solid counterparts, the unprecedented degree of flexibility in their geometrical design has not yet been fully exploited to optimize their properties and performance. In order to develop the ideal bone implants, it is important to take advantage of the full potential of AM biodegradable porous metals through detailed and systematic study on their biodegradation behavior, mechanical properties, biocompatibility, and bone regeneration performance. This review paper presents the state of the art in AM biodegradable porous metals and is focused on the effects of material type, processing, geometrical design, and post-AM treatments on the mechanical properties, biodegradation behavior, in vitro biocompatibility, and in vivo bone regeneration performance of AM porous Mg, Fe, and Zn as well as their alloys. We also identify a number of knowledge gaps and the challenges encountered in adopting AM biodegradable porous metals for orthopedic applications and suggest some promising areas for future research.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Aleaciones , Humanos , Metales , Porosidad
6.
J Vis Exp ; (127)2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28930985

RESUMEN

The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.


Asunto(s)
Regeneración Ósea/fisiología , Huesos/irrigación sanguínea , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles , Durapatita , Ácido Láctico , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía de Fluorescencia por Excitación Multifotónica , Neovascularización Fisiológica/genética , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Proteínas Proto-Oncogénicas c-sis/genética
7.
Ann Anat ; 214: 36-42, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28774818

RESUMEN

BACKGROUND: Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss® in ethanol (EtOH) treated osteoblasts. METHODS: The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss® were assessed. RESULTS: The application of PRGF and Bio-Oss® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. CONCLUSIONS: These results indicate that the simultaneous application of PRGF and Bio-Oss® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration.


Asunto(s)
Plaquetas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Etanol/toxicidad , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Minerales/administración & dosificación , Osteoblastos/efectos de los fármacos , Sustitutos de Huesos/administración & dosificación , Línea Celular , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Citoprotección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Humanos , Osteoblastos/citología , Osteoblastos/fisiología , Resultado del Tratamiento
8.
Tissue Eng Part A ; 21(9-10): 1495-506, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25627039

RESUMEN

A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 µg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor cells. Long-term beneficial effects of osteostatin-coated, porous titanium implants on bone regeneration or mechanical strength were not established here and may require optimization of the pace and dose of osteostatin release.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Fémur/patología , Fémur/fisiopatología , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/farmacología , Titanio/farmacología , Adolescente , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Porosidad , Ratas Wistar , Microtomografía por Rayos X
9.
Tissue Eng Part A ; 19(23-24): 2605-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23822814

RESUMEN

Porous titanium scaffolds are a promising class of biomaterials for grafting large bone defects, because titanium provides sufficient mechanical support, whereas its porous structure allows bone ingrowth resulting in good osseointegration. To reinforce porous titanium scaffolds with biological cues that enhance and continue bone regeneration, scaffolds can be incorporated with bioactive gels for time- and dose-controlled delivery of multiple growth factors (GFs). In this study, critical femoral bone defects in rats were grafted with porous titanium scaffolds incorporated with nanostructured colloidal gelatin gels. Gels were loaded with bone morphogenetic protein-2 (BMP-2, 3 µg), fibroblast growth factor-2 (FGF-2, 0.6 µg), BMP-2, and FGF-2 (BMP-2/FGF-2, ratio 5:1) or were left unloaded. GF delivery was controlled by fine tuning the crosslinking density of oppositely charged nanospheres. Grafted femurs were evaluated using in vivo and ex vivo micro-CT, histology, and three-point bending tests. All porous titanium scaffolds containing GF-loaded gels accelerated and enhanced bone regeneration: BMP-2 gels gave an early increase (0-4 weeks), and FGF-2 gels gave a late increase (8-12 weeks). Interestingly, stimulatory effects of 0.6 µg FGF-2 were similar to a fivefold higher dose of BMP-2 (3 µg). BMP-2/FGF-2 gels gave more bone outside the porous titanium scaffolds than gels with only BMP-2 or FGF-2, resulted in bridging of most defects and showed superior bone-implant integrity in three-point bending tests. In conclusion, incorporation of nanostructured colloidal gelatin gels capable of time- and dose-controlled delivery of BMP-2 and FGF-2 in porous titanium scaffolds is a promising strategy to enhance and continue bone regeneration of large bone defects.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Regeneración Ósea , Sistemas de Liberación de Medicamentos , Factor 2 de Crecimiento de Fibroblastos/química , Nanoestructuras/química , Titanio/química , Animales , Proteína Morfogenética Ósea 2/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Masculino , Ratas , Ratas Wistar , Andamios del Tejido , Titanio/farmacología
10.
J Orthop Res ; 31(5): 792-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23255164

RESUMEN

Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects.


Asunto(s)
Enfermedades Óseas/cirugía , Regeneración Ósea/fisiología , Andamios del Tejido , Titanio , Animales , Fenómenos Biomecánicos/fisiología , Enfermedades Óseas/diagnóstico por imagen , Enfermedades Óseas/fisiopatología , Sustitutos de Huesos/farmacología , Fémur/diagnóstico por imagen , Fémur/fisiología , Fémur/cirugía , Rayos Láser , Masculino , Ensayo de Materiales , Ratas , Ratas Wistar , Microtomografía por Rayos X
11.
J Orthop Res ; 29(12): 1867-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21557302

RESUMEN

Aseptic loosening is the devastating long term complication of total hip arthroplasty and orthopedic implant debris has been shown to trigger an intense inflammatory reaction leading to resorption of the bone matrix. Inflammatory cytokines, such as tumor necrosis factor-α (TNFα), have been implicated in this process and osteocytes may play a role in its production. We previously demonstrated that cobalt-chromium-molybdenum (CoCrMo) particles upregulate TNFα production by MLO-Y4 osteocytes in vitro, but the underlying mechanism has not been elucidated. Based on previous studies by others, we hypothesized that the calcineurin-nuclear factor of activated T cells (NFAT) pathway mediates CoCrMo particle-induced TNFα production in MLO-Y4 osteocytes. MLO-Y4 osteocytes exposed to CoCrMo particle treatment resulted in a rapid and significant increase in calcineurin activity. We also demonstrate that CoCrMo particle-induced upregulation of TNFα is reduced to control levels with calcineurin-NFAT inhibitors and this was also confirmed at mRNA level. Moreover, we demonstrate the localization of NFATs in MLO-Y4 osteocytes and that NFAT1 and 2 translocate to the nucleus upon CoCrMo particle treatment. Our results suggest that calcineurin-NFAT signaling is involved in TNFα production by MLO-Y4 osteocytes after CoCrMo particle treatment.


Asunto(s)
Calcineurina/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Vitalio/farmacología , Artroplastia de Reemplazo de Cadera , Inhibidores de la Calcineurina , Línea Celular , Núcleo Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Humanos , Ensayo de Materiales , Osteocitos/citología , Osteocitos/metabolismo , Falla de Prótesis , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA