Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oral Dis ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154397

RESUMEN

OBJECTIVE: The aim of this study was to explore the regulatory effect of RUNX2 mutation on dental follicle cells (DFCs) senescence and clarify the underlying mechanism. This study aimed to explore the basis for a novel mechanism of delayed permanent tooth eruption in cleidocranial dysplasia (CCD) patients. MATERIALS AND METHODS: Dental follicles were collected from a CCD patient and healthy controls. Senescence-associated ß-galactosidase (SA-ß-gal) staining, Ki67 staining, cell cycle assays, and senescence-related gene and protein expression assays were performed to assess DFCs senescence. Western blotting was performed to detect the activation of mitogen-activated protein kinase (MAPK) signalling pathways, and the molecular mechanism underlying RUNX2 regulating in DFCs senescence was explored. RESULTS: RUNX2 mutation inhibited the cellular senescence of DFCs from the CCD patient compared with healthy controls. Ki67 staining showed that mutant RUNX2 promoted DFCs proliferation, and cell cycle assays revealed that the healthy control-derived DFCs arrested at G1 phase. RUNX2 mutation significantly downregulated senescence-associated gene and protein expression. RUNX2 mutation suppressed ERK signalling pathway activation, an ERK inhibitor decreased healthy control-derived DFCs senescence, and an ERK activator promoted CCD patient-derived DFCs senescence. CONCLUSIONS: RUNX2 mutation delayed DFCs senescence through the ERK signalling pathway, which may be responsible for delayed permanent tooth eruption in CCD patients.

2.
Dent Traumatol ; 37(1): 73-80, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32794607

RESUMEN

BACKGROUND/AIM: The viability of periodontal ligament cells on the root surface is a major factor that influences the healing of replanted teeth. A suitable storage medium is necessary to preserve avulsed teeth before replantation. Conditioned medium from placenta-derived mesenchymal stem cells (PMSC-CM) contains a variety of growth factors. The aim of this study was to evaluate the effectiveness of PMSC-CM as a storage medium to maintain the cell viability of avulsed teeth. MATERIAL AND METHODS: Extracted premolars from healthy humans were randomly stored in Hank's balanced salt solution (HBSS) and PMSC-CM for 6, 12 and 24 hours, respectively, at room temperature, and then the ratio of apoptosis of the periodontal ligament (PDL) cells was identified by flow cytometry. Human periodontal ligament stem cells (PDLSCs) were incubated with HBSS and PMSC-CM, respectively, for 6, 12, 24 and 48 hours in 5% CO2 at 37°C. Then, the cell viability of PDLSCs was determined using the cell counting kit-8 (CCK-8) and a cell cycle assay was performed. RESULTS: The apoptosis rate of PDL cells in PMSC-CM was significantly lower than that in HBSS at 24 hours (P < .001), while the two groups showed similar cell apoptosis rates at 6 and 12 hours (P > .05). The cell proliferation of PDLSCs treated with PMSC-CM significantly increased compared with the HBSS group (P < .05). The cell cycle assay revealed that the PDLSCs treated with HBSS were arrested at the G1 phase, while there was no difference between the PMSC-CM group and the control group (P > .05). CONCLUSIONS: Compared with HBSS, PMSC-CM showed better inhibition of apoptosis of PDL cells and promoted the proliferation of PDLSCs. Thus, PMSC-CM could be a promising storage medium for avulsed teeth.


Asunto(s)
Células Madre Mesenquimatosas , Soluciones Preservantes de Órganos , Avulsión de Diente , Animales , Supervivencia Celular , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Soluciones Isotónicas , Leche , Ligamento Periodontal , Placenta , Embarazo , Avulsión de Diente/terapia
3.
Stem Cells Int ; 2020: 5816723, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565828

RESUMEN

Regenerative endodontic procedures (REPs) are a new option for the treatment of dental pulp or periapical diseases in permanent teeth with open apices. Histologically, the new tissues formed in the root canal after REPs are mainly cementum- or bone-like mineralised tissues, but not the real dentine-pulp complex. Therefore, how to promote dentine-pulp complex regeneration and improve the clinical effects of REPs has become a prominent research topic. Stem cells from apical papilla (SCAP) are derived from the dental papilla that can differentiate into primary odontoblasts and dental pulp cells that produce root dentine and dental pulp. Exosomes are the key regulator for the paracrine activity of stem cells and can influence the function of recipient cells. In this study, SCAP-derived exosomes (SCAP-Exo) were introduced into the root fragment containing bone marrow mesenchymal stem cells (BMMSCs) and transplanted subcutaneously into immunodeficient mice. We observed that dental pulp-like tissues were present and the newly formed dentine was deposited onto the existing dentine in the root canal. Afterwards, the effects of SCAP-Exo on the dentinogenesis of BMMSCs were elucidated in vitro. We found that the gene and protein expression of dentine sialophosphoprotein and mineralised nodule formation in BMMSCs treated with SCAP-Exo were significantly increased. In summary, SCAP-Exo were endocytosed by BMMSCs and obviously improved their specific dentinogenesis. The use of exosomes derived from dental stem cells could comprise a potential therapeutic approach for dentine-pulp complex regeneration in REPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA