Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 24(7): 3127-3137, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276461

RESUMEN

The relationship between the density of the entangled amorphous network and the ductility of oriented poly(l-lactide) (PLLA) films is explored based on the preferential hydrolysis of the amorphous regions in phosphate buffer solution (PBS). PLLA films with a balance of ductility and stiffness have been prepared by the "casting-annealing stretching" based on mechanical rejuvenation, and the structural evolution and mechanical properties at different hydrolysis durations have been identified. Various stages are found during the transition of ductility to brittleness for hydrolyzed PLLA films. First, the elongation at break for hydrolyzed PLLA films remains unchanged in the first stage of hydrolysis and then gradually decreases. Eventually, the films turn to be brittle in the third stage. The strain-hardening modulus (GR) of the hydrolyzed films is utilized to reflect the density of the entangled amorphous network, and a gradual decrease of GR with hydrolysis time indicates the decisive role of the amorphous entanglement network in the mechanical rejuvenation-induced ductility of PLLA. The quantitative relationship between the entangled amorphous network and the stress-induced ductility of PLLA films is revealed. The dependence of deformation behavior on entangled amorphous network density is closely correlated to activated primary structure during deformation. The intact chain network plays a crucial role in sufficiently activating the primary structure to yield and disentanglement during the subsequent necking. These findings could advance the understanding of the PLLA's ductility induced by mechanical rejuvenation and offer guidance for awakening the intrinsic toughness of PLLA.


Asunto(s)
Poliésteres , Poliésteres/química , Resistencia a la Tracción , Hidrólisis
2.
Biomacromolecules ; 23(9): 3990-4003, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960547

RESUMEN

The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.


Asunto(s)
Nylons , Enlace de Hidrógeno , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA