Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Oral Investig ; 27(7): 3885-3894, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37017752

RESUMEN

OBJECTIVES: To investigate the genetic causes and teeth characteristics of dentin dysplasia Shields type II(DD-II) in three Chinese families. MATERIALS AND METHODS: Data from three Chinese families affected with DD-II were collected. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) were conducted to screen for variations, and Sanger sequencing was used to verify mutation sites. The physical and chemical characteristics of the affected teeth including tooth structure, hardness, mineral content, and ultrastructure were investigated. RESULTS: A novel frameshift deletion mutation c.1871_1874del(p.Ser624fs) in DSPP was found in families A and B, while no pathogenic mutation was found in family C. The affected teeth's pulp cavities were obliterated, and the root canals were smaller than normal teeth and irregularly distributed comprising a network. The patients' teeth also had reduced dentin hardness and highly irregular dentinal tubules. The Mg content of the teeth was significantly lower than that of the controls, but the Na content was obviously higher than that of the controls. CONCLUSIONS: A novel frameshift deletion mutation, c.1871_1874del (p.Ser624fs), in the DPP region of the DSPP gene causes DD-II. The DD-II teeth demonstrated compromised mechanical properties and changed ultrastructure, suggesting an impaired function of DPP. Our findings expand the mutational spectrum of the DSPP gene and strengthen the understanding of clinical phenotypes related to the frameshift deletion in the DPP region of the DSPP gene. CLINICAL RELEVANCE: A DSPP mutation can alter the characteristics of the affected teeth, including tooth structure, hardness, mineral content, and ultrastructure.


Asunto(s)
Dentinogénesis Imperfecta , Diente , Humanos , Dentina/patología , Dentinogénesis , Dentinogénesis Imperfecta/genética , Proteínas de la Matriz Extracelular/genética , Mutación , Fenotipo
2.
Int J Biol Macromol ; 259(Pt 1): 129137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171438

RESUMEN

Large quantities of organic dyes are discharged into the environment, causing serious damage to the ecosystem. Therefore, it is urgent to develop inexpensive adsorbents to remove organic dyes. A novel cellulose-based aerogel (MPPA) with 3D porous structure was prepared by using cassava residue (cellulose) as basic construction blocks, doping ferroferric oxide (Fe3O4) for magnetic separation, and applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). MPPA exhibited porous network structure, numerous active capture sites, nontoxicity, high hydrophilicity, and excellent thermal stability. MPPA showed superior adsorption property for CR, with an equilibrium adsorption capacity of 2018.14 mg/g, and still had an adsorption property of 1189.31 mg/g after five recycling procedures. In addition, MPPA has excellent selectivity for CR in four binary dye systems. The adsorption behavior of MPPA on CR was further explored using a multilayer adsorption model, EDR-IDR hybrid model and AOAS model. Electrostatic potential and independent gradient models were used to further verify the possible interaction between MPPA and CR molecules. In conclusion, MPPA is a promising adsorbent in the field of treating anionic dyes.


Asunto(s)
Rojo Congo , Contaminantes Químicos del Agua , Rojo Congo/química , Celulosa/química , Adsorción , Ecosistema , Colorantes/química
3.
Int J Biol Macromol ; 229: 1054-1068, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36627036

RESUMEN

The crucial need for quality refined sugar has led to the development of advanced adsorbents, with a focus on the decolorization of remelt syrup. In this study, (3-chloro-2-hydroxypropyl) trimethylammonium chloride and polyethyleneimine co-modified pomelo peel cellulose-derived aerogel (CP-PPA) was fabricated, and synthetic melanoidins were used as model colorants of remelt syrup to evaluate the validity and practicality of CP-PPA for eliminating colored impurities. Integrating abundant amine-functionalized groups (quaternary ammonium and protonated amine) within the pomelo peel-derived aerogel directionally captured electronegative melanoidins via electrostatic interactions. Furthermore, the active sites, types, and relative strength of the weak interactions between CP-PPA and melanoidins were determined using density functional theory simulations. CP-PPA exhibited an excellent equilibration adsorbing capacity for capturing melanoidins of 749.51 mg/g, and a removal efficiency of 93.69 %. Additionally, the adsorption mechanism was thoroughly examined in an effort to improve the economy of the sugar refinement industry.


Asunto(s)
Cloruros , Azúcares , Polietileneimina , Celulosa , Derivados de la Hipromelosa , Aminas , Adsorción
4.
J Hazard Mater ; 447: 130731, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36640505

RESUMEN

Melanoidins are hazardous dark-coloured substances contained in molasses-based distillery wastewater. Adsorption is an effective approach to eliminate melanoidins from wastewater. However, melanoidin adsorption capacities of available adsorbents are unsatisfactory, which seriously limits their practical application. A hyperbranched polyethyleneimine-functionalised chitosan aerogel (HPCA) was fabricated as an effective adsorbent for melanoidin scavenging. HPCA demonstrated superior melanoidin adsorption efficiency because of its high specific surface area, abundant amino functional groups, and high hydrophilicity. Melanoidin removal rate of HPCA was 94.95%, which remained at 91.45% after 5 cycles. Notably, using the Langmuir isothermal model, the maximum melanoidin adsorption capacity of HPCA was determined to be 868.36 mg/g, surpassing those of most of previously reported adsorbents. Toxicity experiments indicated that HPCA can be considered a safe adsorbent with excellent biocompatibility that hardly threatens aquatic organisms. The efficient melanoidin removal of HPCA was attributed to electrostatic attraction, H-bonding, and van der Waals force. However, the adsorption might be predominantly controlled by electrovalent interaction between protonated amino groups of HPCA and carboxyl/carboxylate groups of melanoidins. Two novel models, namely, external diffusion resistance-internal diffusion resistance mixed model and adsorption on active site model, were employed to describe the dynamic mass transfer characteristics of melanoidin adsorption by HPCA.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Aguas Residuales , Polietileneimina , Polímeros/química , Adsorción , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA