Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Semin Diagn Pathol ; 39(2): 113-119, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34176697

RESUMEN

Acute mediastinitis is a rare infection that carries high morbidity and mortality. They are complications seen most often with deep sternal wound infections from surgeries with median sternotomies, oropharyngeal and odontogenic infections and esophageal perforations. These conditions should be promptly recognized and treated. Mediastinal granulomas are focal, mass-like lesions commonly resulting from prior granulomatous infections. They are regarded as benign, self-resolving lesions however can cause complications by compression of adjacent mediastinal structures. Chronic fibrosing mediastinitis is a rare, diffuse fibroinflammatory process most often seen with granulomatous infections and carries a worse prognosis than mediastinal granulomas especially when adjacent mediastinal structures are compromised. In this review, we discuss the epidemiology, etiology, clinical presentation, treatment and prognosis of acute mediastinitis, mediastinal granulomas, and chronic fibrosing mediastinitis.


Asunto(s)
Mediastinitis , Enfermedad Aguda , Granuloma , Humanos , Mediastinitis/diagnóstico , Mediastinitis/etiología , Mediastino , Esclerosis
2.
J Biol Chem ; 294(11): 4272-4281, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30651350

RESUMEN

Dietary, fructose-containing sugars have been strongly associated with the development of nonalcoholic fatty liver disease (NAFLD). Recent studies suggest that fructose also can be produced via the polyol pathway in the liver, where it may induce hepatic fat accumulation. Moreover, fructose metabolism yields uric acid, which is highly associated with NAFLD. Here, using biochemical assays, reporter gene expression, and confocal fluorescence microscopy, we investigated whether uric acid regulates aldose reductase, a key enzyme in the polyol pathway. We evaluated whether soluble uric acid regulates aldose reductase expression both in cultured hepatocytes (HepG2 cells) and in the liver of hyperuricemic rats and whether this stimulation is associated with endogenous fructose production and fat accumulation. Uric acid dose-dependently stimulated aldose reductase expression in the HepG2 cells, and this stimulation was associated with endogenous fructose production and triglyceride accumulation. This stimulatory mechanism was mediated by uric acid-induced oxidative stress and stimulation of the transcription factor nuclear factor of activated T cells 5 (NFAT5). Uric acid also amplified the effects of elevated glucose levels to stimulate hepatocyte triglyceride accumulation. Hyperuricemic rats exhibited elevated hepatic aldose reductase expression, endogenous fructose accumulation, and fat buildup that was significantly reduced by co-administration of the xanthine oxidase inhibitor allopurinol. These results suggest that uric acid generated during fructose metabolism may act as a positive feedback mechanism that stimulates endogenous fructose production by stimulating aldose reductase in the polyol pathway. Our findings suggest an amplifying mechanism whereby soft drinks rich in glucose and fructose can induce NAFLD.


Asunto(s)
Tejido Adiposo/metabolismo , Aldehído Reductasa/metabolismo , Fructosa/biosíntesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polímeros/metabolismo , Ácido Úrico/farmacología , Animales , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Fructosa/metabolismo , Células Hep G2 , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Polímeros/análisis , Ratas , Ratas Wistar , Células Tumorales Cultivadas , Ácido Úrico/metabolismo
3.
J Am Soc Nephrol ; 25(11): 2526-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24876114

RESUMEN

Diabetes is associated with activation of the polyol pathway, in which glucose is converted to sorbitol by aldose reductase. Previous studies focused on the role of sorbitol in mediating diabetic complications. However, in the proximal tubule, sorbitol can be converted to fructose, which is then metabolized largely by fructokinase, also known as ketohexokinase, leading to ATP depletion, proinflammatory cytokine expression, and oxidative stress. We and others recently identified a potential deleterious role of dietary fructose in the generation of tubulointerstitial injury and the acceleration of CKD. In this study, we investigated the potential role of endogenous fructose production, as opposed to dietary fructose, and its metabolism through fructokinase in the development of diabetic nephropathy. Wild-type mice with streptozotocin-induced diabetes developed proteinuria, reduced GFR, and renal glomerular and proximal tubular injury. Increased renal expression of aldose reductase; elevated levels of renal sorbitol, fructose, and uric acid; and low levels of ATP confirmed activation of the fructokinase pathway. Furthermore, renal expression of inflammatory cytokines with macrophage infiltration was prominent. In contrast, diabetic fructokinase-deficient mice demonstrated significantly less proteinuria, renal dysfunction, renal injury, and inflammation. These studies identify fructokinase as a novel mediator of diabetic nephropathy and document a novel role for endogenous fructose production, or fructoneogenesis, in driving renal disease.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Fructoquinasas/metabolismo , Fructosa/biosíntesis , Fructosa/metabolismo , Túbulos Renales Proximales/enzimología , Animales , Glucemia/metabolismo , Peso Corporal , Línea Celular Transformada , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/patología , Humanos , Corteza Renal/enzimología , Corteza Renal/patología , Glomérulos Renales/citología , Glomérulos Renales/patología , Túbulos Renales Proximales/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Polímeros/metabolismo
4.
Free Radic Biol Med ; 141: 182-191, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31212064

RESUMEN

Recently repeated heat stress and dehydration have been reported to cause oxidative stress and kidney damage that is enhanced by rehydrating with fructose solutions. We hypothesized that antioxidants might provide a novel way to prevent kidney damage. To test this hypothesis, mild heat stress was induced by exposing rats to 37 °C during 1 h in a closed chamber. The supplementation with water-soluble antioxidants (Antiox), ascorbic acid 1% plus N-acetyl cysteine 600 mg/L was done either in the 10% fructose 2 h rehydration fluid immediately after heat stress (Fructose 10% + Antiox), and/or in the tap water (Water + Antiox) for the remainder of the day, or in both fluids. After 4 weeks, control rats exposed to heat with fructose rehydration developed impaired renal function, tubular injury, intrarenal oxidative stress, a reduction in Nrf2-Keap1 antioxidant pathway, stimulation of vasopressin and the intrarenal polyol-fructokinase pathway. In contrast, dosing the antioxidants in the tap water (i.e., before the heat exposure and rehydration with fructose) preserved renal function, prevented renal tubule dysfunction and avoided the increase in systemic blood pressure. These effects were likely due to the amplification of the antioxidant defenses through increased Nrf2 nuclear translocation stimulated by the antioxidants and by the prevention of polyol fructokinase pathway overactivation. More studies to understand the mechanisms implicated in this pathology are warranted as there is recent evidence that they may be operating in humans as well.


Asunto(s)
Antioxidantes/farmacología , Bebidas , Fructosa/efectos adversos , Respuesta al Choque Térmico , Enfermedades Renales/metabolismo , Transporte Activo de Núcleo Celular , Aldehído Reductasa/metabolismo , Animales , Antioxidantes/administración & dosificación , Presión Sanguínea , Núcleo Celular/metabolismo , Deshidratación , Fluidoterapia , Fructoquinasas/metabolismo , Glutatión/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Polímeros/metabolismo , Transporte de Proteínas , Ratas , Ratas Wistar
5.
Nat Commun ; 4: 2434, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24022321

RESUMEN

Carbohydrates with high glycaemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinaemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase-deficient mice are protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism by which glucose promotes the development of metabolic syndrome.


Asunto(s)
Fructosa/biosíntesis , Fructosa/metabolismo , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Aldehído Reductasa/metabolismo , Animales , Metabolismo Energético , Hígado Graso/metabolismo , Conducta Alimentaria , Fructoquinasas/deficiencia , Fructoquinasas/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Hígado/enzimología , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polímeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA