Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Langmuir ; 36(16): 4396-4404, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32255641

RESUMEN

Tissue-engineered vascular graft (TEVG) is a promising alternative to meet the clinical demand of organ shortages. Herein, human hair keratin was extracted by the reduction method, followed by modification with zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) through thiol-Michael addition to improve blood clotting nature. Then, phosphobetainized keratin (PK) was coelectrospun with poly(ε-caprolactone) (PCL) to afford PCL/PK mats with a ratio of 7:3. The surface morphology, chemical structure, and wettability of these mats were characterized. The biocomposite mats selectively enhanced adhesion, migration, and growth of endothelial cells (ECs) while suppressed proliferation of smooth muscle cells (SMCs) in the presence of glutathione (GSH) and GSNO due to the catalytic generation of NO. In addition, these mats exhibited good blood anticoagulant activity by reducing platelet adhesion, prolonging blood clotting time, and inhibiting hemolysis. Taken together, these NO-generating PCL/PK mats have potential applications as a scaffold for vascular tissue engineering with rapid endothelialization and reduced SMC proliferation.


Asunto(s)
Materiales Biocompatibles/química , Queratinas/química , Óxido Nítrico/farmacología , Poliésteres/química , Andamios del Tejido/química , Catálisis , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cabello/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Adhesividad Plaquetaria/efectos de los fármacos , Ingeniería de Tejidos
2.
Int J Biol Macromol ; 189: 516-527, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34450147

RESUMEN

Rapid endothelialization and regulation of smooth muscle cell proliferation are crucial for small-diameter vascular grafts to address poor compliance, thromboembolism, and intimal hyperplasia, and achieve revascularization. As a gaseous signaling molecule, nitric oxide (NO) regulates cardiovascular homeostasis, inhibits blood clotting and intimal hyperplasia, and promotes the growth of endothelial cells. Due to the instability and burst release of small molecular NO donors, a novel biomacromolecular donor has generated increasing interest. In the study, a low toxic NO donor of S-nitrosated keratin (KSNO) was first synthesized and then coelectrospun with poly(ε-caprolactone) to afford NO-releasing small-diameter vascular graft. PCL/KSNO graft was capable to generate NO under the catalysis of ascorbic acid (Asc), so the graft selectively elevated adhesion and growth of human umbilical vein endothelial cells (HUVECs), while inhibited the proliferation of human aortic smooth muscle cells (HASMCs) in the presence of Asc. In addition, the graft displayed significant antibacterial properties and good blood compatibility. Animal experiments showed that the biocomposite graft could inhibit thrombus formation and preserve normal blood flow via single rabbit carotid artery replacement for 1 month. More importantly, a complete endothelium was observed on the lumen surface. Taken together, PCL/KSNO small-diameter vascular graft has potential applications in vascular tissue engineering with rapid endothelialization and vascular remolding.


Asunto(s)
Materiales Biocompatibles/química , Prótesis Vascular , Queratinas/química , Óxido Nítrico/metabolismo , Poliésteres/química , Andamios del Tejido/química , Animales , Aorta/citología , Adhesión Celular , Muerte Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Escherichia coli/crecimiento & desarrollo , Hemólisis , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Miocitos del Músculo Liso/citología , Nitrosación , Adhesividad Plaquetaria , Conejos , Espectroscopía Infrarroja por Transformada de Fourier
3.
Mater Sci Eng C Mater Biol Appl ; 107: 110246, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761158

RESUMEN

Heparin-like polymers have a good anticoagulant effect due to some groups similar to heparin. Herein, sulfonated keratin(SK) was prepared by chain transfer radical polymerization of 3-sulfopropyl methacrylate(SPMA) to improve blood coagulation nature of keratin. Poly(ε-caprolactone)(PCL)/SK nanofibrous mats with the ratio of 7 and 3 were then fabricated by electrospinning. In vitro cytotoxicity and blood compatibility tests were performed to assess the biocompatibility. Viability of NIH 3T3 cells on PCL/SK mats was higher than that on the pristine PCL mats, indicating their good cytocompatibility. These sulfonated keratin-containing mats enhanced endothelial cell growth, while inhibited smooth muscle cell proliferation and reduced platelet adhesion in the presence of GSH and GSNO, as a result of NO generation. Furthermore, the biocomposite mats prolonged the activated partial thromboplastin time(APTT) effectively without hemolysis. Taken together, PCL/SK mats are potential for applications in vascular tissue engineering.


Asunto(s)
Queratinas/química , Óxido Nítrico/metabolismo , Poliésteres/química , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutatión/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Células 3T3 NIH , Nanofibras/química , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/efectos de los fármacos
4.
J Biomed Mater Res A ; 108(2): 292-300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31606923

RESUMEN

Vascular endothelial growth factor (VEGF) is an effective growth and angiogenic cytokine, which stimulates proliferation and survival of endothelial cells, and promotes angiogenesis and vascular permeability. Binding VEGF with heparin could protect it from rapid degradation, subsequently allowing it to be controlled release. Primarily, poly(ε-caprolactone) (PCL) and keratin were coelectrospun, followed by conjugating with heparin and subsequently binding VEGF. The loaded heparin and VEGF on these mats were quantified, respectively. The surface characteristics of mats were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The VEGF delivery results indicated these mats could sustainably release VEGF for 2 weeks. Cell viability assays suggested these mats were valid to accelerate human umbilical vein endothelial cells (HUVECs) proliferation, while inhibit human umbilical arterial smooth muscle cells (HUASMCs) growth under the combined actions of VEGF and heparin. The results tested by blood clotting times (APTT, PT, and TT), hemolysis, and platelet adhesion indicated the mats were blood compatible. To sum up, these biocomposite mats are ideal scaffolds for vascular tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Células Endoteliales/citología , Miocitos del Músculo Liso/citología , Poliésteres/química , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Materiales Biocompatibles/farmacología , Prótesis Vascular , Línea Celular , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Células Endoteliales/efectos de los fármacos , Heparina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Queratinas/química , Miocitos del Músculo Liso/efectos de los fármacos , Nanofibras/química , Nanofibras/ultraestructura , Ingeniería de Tejidos/métodos , Factor A de Crecimiento Endotelial Vascular/farmacología
5.
J Mater Chem B ; 8(28): 6092-6099, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32555924

RESUMEN

Tissue-engineered vascular grafts (TEVGs) have been proposed as a promising approach to fulfill the need for small-diameter blood vessel substitutes. However, common failure caused by thrombosis and neointimal proliferation after implantation has restricted their use in the clinic. Herein, a NO-generating scaffold for vascular tissue engineering was developed by coelectrospinning poly(ε-caprolactone) (PCL) with keratin. The morphology and surface chemical composition were characterized via SEM, ATR-FTIR spectroscopy and XPS. The biocomposite scaffold selectively enhanced the adhesion and growth of endothelial cells (ECs) while suppressing the proliferation of smooth muscle cells (SMCs) in the presence of GSH and GSNO due to the catalytic generation of NO. In addition, these mats displayed excellent blood compatibility by prolonging the blood-clotting time. In summary, these NO-generating PCL/keratin scaffolds have potential applications in vascular tissue engineering with rapid endothelialization and reduced SMC proliferation.


Asunto(s)
Materiales Biocompatibles/química , Queratinas/química , Nanofibras/química , Óxido Nítrico/química , Poliésteres/química , Andamios del Tejido/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico/metabolismo
6.
J Biomater Sci Polym Ed ; 29(14): 1785-1798, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30035672

RESUMEN

Heparins are capable of improving blood compatibility, enhancing HUVEC viability, while inhibiting HUASMC proliferation. Combination of biodegradable poly(ε-caprolactone) (PCL) with keratin and heparins would provide an anticoagulant and endothelialization supporting environment for vascular tissue engineering. Herein, PCL and keratin were first coelectrospun and then covalently conjugated with heparins. The resulting mats were surface-characterized by ATR-FTIR, SEM, WCA, and XPS. Cell viability data showed that the heparinized PCL/keratin mats could motivate the adhesion and growth of HUVEC, while inhibit HUASMC proliferation. In addition, these mats could prolong blood clotting time and reduce platelet adhesion as well as no erythrolysis. Interestingly, these mats could catalyze the NO donor in blood to release NO, which could enhance endothelial cell growth, while decrease smooth muscle cell proliferation and platelet adhesion. In summary, the heparinized mats would be a good candidate as a scaffold for vascular tissue engineering. This study is novel in that we prepared a type of heparinized tissue scaffold that could catalyze the NO donor to release NO to regulate endothelialization without angiogenesis and thrombus formation.


Asunto(s)
Materiales Biocompatibles/química , Vasos Sanguíneos/química , Heparina/química , Queratinas/química , Óxido Nítrico/biosíntesis , Poliésteres/química , Andamios del Tejido/química , Células 3T3 , Animales , Coagulación Sanguínea , Adhesión Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Adhesividad Plaquetaria , Ingeniería de Tejidos
7.
J Biomed Mater Res A ; 106(12): 3239-3247, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30289598

RESUMEN

Nitric oxide (NO)-generating materials are beneficial for vascular tissue engineering (VTE) scaffold because the produced NO would enhance endothelial cells viability while inhibit smooth muscle cell (SMC) proliferation and reduce platelet adhesion, resulting in ideal hemocompatibility and endothelialization. Herein, poly(ε-caprolactone) (PCL)/keratin biocomposite mats were first fabricated, followed by in situ gold (Au) nanoparticles loading to afford PCL/keratin/AuNPs mats. These mats were characterized using field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The PCL/keratin/AuNPs mats were demonstrated to be capable of catalyzing NO release in the mimicked blood microenvironments. The generated NO could enhance human umbilical vein endothelial cell growth and inhibit human umbilical arterial SMC viability. In addition, these mats maintained the antibacterial activity of Au nanoparticles with good blood compatibility. Taken together, these keratin-based composite mats have potential usage in the VTE. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3239-3247, 2018.


Asunto(s)
Oro/química , Queratinas/química , Nanopartículas del Metal/química , Donantes de Óxido Nítrico/química , Poliésteres/química , Andamios del Tejido/química , Catálisis , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Oro/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Queratinas/farmacología , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Poliésteres/farmacología , Ingeniería de Tejidos/métodos
8.
Colloids Surf B Biointerfaces ; 145: 275-284, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208441

RESUMEN

A low-fouling zwitterionic surface strategy has been proven to be promising and effective for repelling nonspecific adsorption of proteins, cells and bacteria, which may eventually induce adverse pathogenic problems such as thrombosis and infection. Herein, a multi-step process was developed by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) technique for improving hemocompatible and anti-biofouling properties. Polyethylene terephthalate (PET) sheets were first treated with dopamine, and then the bromoalkyl initiators were immobilized on the poly(dopamine) functionalized surfaces, followed by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) of 2-(dimethylamino) ethyl methacrylate (DMAEMA) monomer. Subsequently, the resulting PET sheets were ring-opening reacted with 1,3-propiolactone (PL) and 1,3-propanesultone (PS) to afford polycarboxybetaine and polysulfobetaine brushes, respectively. Characterizations of the PET sheets were undertaken by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscope (AFM), water contact angle (WCA) measurements, and X-ray photoelectron spectroscopy (XPS) analysis, respectively. The conversion rates of PDMAEMA to polyzwitterions were evaluated by XPS analysis. The remained PDMAEMA(weak cationic) and formed zwitterions(neutral) would form a synergetic antifouling and antibacterial surface. Hemocompatible and anti-biofouling properties were evaluated by total adsorption of protein as well as the adhesion of platelet, cell and bacterium. Zwitterionic polymer brushes grafted PET sheets showed outstanding hemocompatibility featured on reduced platelet adhesion and repelled protein adsorption. Meanwhile, the grafted PET sheets exerted excellent anti-biofouling property characterized by the resisted adhesion of Escherichia coli and 3T3 cells. In summary, zwitterionic polymer brushed modified PET sheets have a great potential for biomedical applications.


Asunto(s)
Materiales Biocompatibles/farmacología , Incrustaciones Biológicas , Indoles/farmacología , Ensayo de Materiales/métodos , Tereftalatos Polietilenos/química , Polimerizacion , Polímeros/farmacología , Células 3T3 , Adsorción , Animales , Adhesión Bacteriana/efectos de los fármacos , Betaína/análogos & derivados , Betaína/química , Bovinos , Adhesión Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Metacrilatos/química , Ratones , Microscopía de Fuerza Atómica , Adhesividad Plaquetaria , Ácidos Polimetacrílicos/química , Albúmina Sérica Bovina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA