Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 17(18): e2100924, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760359

RESUMEN

Despite corrosion being commonly seen as a problem to be avoided, applications such as batteries or biodegradable implants do benefit from corrosion-like phenomena. However, current strategies address corrosion control from a global perspective for a whole component, without considering local adaptations to functionality specifications or inhomogeneous environments. Here, a novel concept is presented: the local control and guidance of corrosion through a laser surface treatment. Immersion tests in saline solution of AZ31 magnesium alloy samples show degradation rates reduced up to 15 times with the treatment, owing to a fast passivation after the induced microstructural modifications. By controlling the treatment conditions, the degradation can be restricted to delimited regions and driven towards specific directions. The applicability of the method for the design of tailored degradation biomedical implants is demonstrated and uses for cathodic protection systems and batteries can also be anticipated.


Asunto(s)
Aleaciones , Magnesio , Implantes Absorbibles , Corrosión , Rayos Láser , Ensayo de Materiales
2.
Macromol Rapid Commun ; 40(11): e1900019, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30932256

RESUMEN

Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium-substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically-relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100-fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high-content bioactive glass microfiber scaffolds by applying predictive modeling.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Poliésteres/química , Estroncio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Viscosidad
3.
Macromol Rapid Commun ; 38(15)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28564490

RESUMEN

Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n-butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.


Asunto(s)
Sustitutos de Huesos/química , Sustitutos de Huesos/normas , Acrilatos/química , Sustitutos de Huesos/metabolismo , Metacrilatos/química , Osteoblastos/metabolismo , Polimerizacion , Polímeros/química , Dióxido de Silicio/química
4.
Macromol Rapid Commun ; 36(20): 1806-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332784

RESUMEN

In this study, the group transfer polymerization (GTP) of the functional monomer 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) is reported to produce polymers of different architectures and topologies. TMSPMA is successfully polymerized and copolymerized with GTP to produce well-defined (co)polymers that can be used to fabricate functional hybrid materials like hydrogels and films.


Asunto(s)
Metacrilatos/química , Compuestos de Organosilicio/química , Ácidos Polimetacrílicos/síntesis química , Peso Molecular , Polimerizacion
5.
Macromol Rapid Commun ; 36(23): 2060-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26288010

RESUMEN

Reversible addition-fragmentation chain transfer (RAFT) polymerization and characterization of an alkoxysilane acrylamide monomer using a trithiocarbonate chain transfer agent are described. Poly(N-[3-(trimethoxysilyl)propyl]acrylamide) (PTMSPAA) homopolymers are obtained with good control over the polymerization. A linear increase in the molecular weight is observed whereas the polydispersity values do not exceed 1.2 regardless of the monomer conversion. Moreover, PTMSPAA is used as a macro-RAFT agent to polymerize N-isopropylacrylamide (NIPAM). By varying the degree of polymerization of NIPAM within the block copolymer, different sizes of thermoresponsive particles are obtained. These particles are stabilized by the condensation of the alkoxysilane moieties of the polymers. Furthermore, a co-network of silica and PTMSPAA is prepared using the sol-gel process. After drying, transparent mesoporous hybrids are obtained with a surface area of up to 400 m(2) g(-1).


Asunto(s)
Resinas Acrílicas/química , Resinas Acrílicas/síntesis química , Dióxido de Silicio/química
6.
Phys Chem Chem Phys ; 17(4): 2540-9, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25494341

RESUMEN

Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.


Asunto(s)
Materiales Biocompatibles/química , Compuestos de Calcio/química , Silicatos/química , Durapatita/química , Geles , Calor , Espectroscopía de Resonancia Magnética , Óxidos/química , Dióxido de Silicio/química
7.
Phys Chem Chem Phys ; 17(43): 29124-33, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26464180

RESUMEN

Sol-gel hybrids are inorganic/organic co-networks with nanoscale interactions between the components leading to unique synergistic mechanical properties, which can be tailored, via a selection of the organic moiety. Methacrylate based polymers present several benefits for class II hybrids (which exhibit formal covalent bonding between the networks) as they introduce great versatility and can be designed with a variety of chemical side-groups, structures and morphologies. In this study, the effect of high cross-linking density polymers on the structure-property relationships of hybrids generated using poly(3-trimethoxysilylpropyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) was investigated. The complexity and fine scale of the co-network interactions requires the development of new analytical methods to understand how network evolution dictates the wide-ranging mechanical properties. Within this work we developed data manipulation techniques of acoustic-AFM and solid state NMR output that provide new approaches to understand the influence of the network structure on the macroscopic elasticity. The concentration of pTMSPMA in the silica sol affected the gelation time, ranging from 2 h for a hybrid made with 75 wt% inorganic with pTMSPMA at 2.5 kDa, to 1 minute for pTMSPMA with molecular weight of 30 kDa without any TEOS. A new mechanism of gelation was proposed based on the different morphologies derived by AC-AFM observations. We established that the volumetric density of bridging oxygen bonds is an important parameter in structure/property relationships in SiO2 hybrids and developed a method for determining it from solid state NMR data. The variation in the elasticity of pTMSPMA/SiO2 hybrids originated from pTMSPMA acting as a molecular spacer, thus decreasing the volumetric density of bridging oxygen bonds as the inorganic to organic ratio decreased.


Asunto(s)
Geles/química , Metacrilatos/química , Dióxido de Silicio/química , Dispersión Dinámica de Luz , Módulo de Elasticidad , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Transición de Fase , Polímeros/química , Termogravimetría
8.
Chemistry ; 20(26): 8149-60, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24838668

RESUMEN

Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol-gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ-glutamic acid) (γ-PGA) was introduced into the sol-gel process to produce a hybrid of γ-PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol-gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low-temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2 ), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid-state NMR spectroscopy, which showed ionic cross-linking of γ-PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross-linking of γ-PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).


Asunto(s)
Materiales Biocompatibles/química , Calcio/química , Ácido Poliglutámico/análogos & derivados , Dióxido de Silicio/química , Ácido Poliglutámico/química
9.
Chemistry ; 19(24): 7856-64, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23576425

RESUMEN

Hybrid organic-inorganic solids represent an important class of engineering materials, usually prepared by sol-gel processes by cross-reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3-Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid-material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 2-11) was deeply investigated for the first time by solution-state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy-ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of sol-gel hybrid biomaterials with tuneable properties.


Asunto(s)
Materiales Biocompatibles/síntesis química , Compuestos Epoxi/química , Silanos/química , Animales , Materiales Biocompatibles/química , Geles/química , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Agua/química
10.
J Mater Sci Mater Med ; 24(7): 1649-58, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23606191

RESUMEN

Cotton wool-like poly(L-lactic acid) and siloxane-doped vaterite (SiV) composite scaffolds were prepared with a modified electrospinning system for bone tissue engineering applications. The effects of changing the SiV content in the materials from 10 to 30 wt% on elasticity and the ability to release calcium ions and soluble silica were evaluated. The elasticity of the cotton wool-like composites was almost the same as that of the PLLA from the results of compressibility and recovery tests. The materials released calcium ions for more than 56 days and soluble silica for 28-56 days in a tris buffer solution (pH 7.4). Mouse osteoblast-like cells (MC3T3-E1 cells) were cultured on/in the cotton wool-like materials or the fibremats out of the same composite materials as that used for the cotton wool-like materials. The cells penetrated into and proliferated inside the cotton wool-like materials, although they mainly adhered on the fibremat surface.


Asunto(s)
Huesos/fisiología , Carbonato de Calcio/química , Ácido Láctico/química , Nanocompuestos/química , Polímeros/química , Dióxido de Silicio/farmacocinética , Ingeniería de Tejidos , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Huesos/efectos de los fármacos , Huesos/metabolismo , Carbonato de Calcio/farmacocinética , Células Cultivadas , Fibra de Algodón , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Ácido Láctico/farmacocinética , Ensayo de Materiales , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Poliésteres , Polímeros/farmacocinética , Dióxido de Silicio/química , Solubilidad , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Lana/química
11.
J Mater Chem B ; 11(3): 519-545, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36541433

RESUMEN

Bioactive glass-based organic/inorganic hybrids are a family of materials holding great promise in the biomedical field. Developed from bioactive glasses following recent advances in sol-gel and polymer chemistry, they can overcome many limitations of traditional composites typically used in bone repair and orthopedics. Thanks to their unique molecular structure, hybrids are often characterized by synergistic properties that go beyond a mere combination of their two components; it is possible to synthesize materials with a wide variety of mechanical and biological properties. The polymeric component, in particular, can be tailored to prepare tough, load-bearing materials, or rubber-like elastomers. It can also be a key factor in the determination of a wide range of interesting biological properties. In addition, polymers can also be used within hybrids as carriers for therapeutic ions (although this is normally the role of silica). This review offers a brief look into the history of hybrids, from the discovery of bioactive glasses to the latest developments, with a particular emphasis on polymer design and chemistry. First the benefits and limitations of hybrids will be discussed and compared with those of alternative approaches (for instance, nanocomposites). Then, key advances in the field will be presented focusing on the polymeric component: its chemistry, its physicochemical and biological advantages, its drawbacks, and selected applications. Comprehensive tables summarizing all the polymers used to date to fabricate sol-gel hybrids for biomedical applications are also provided, to offer a handbook of all the available candidates for hybrid synthesis. In addition to the current trends, open challenges and possible avenues of future development are proposed.


Asunto(s)
Vidrio , Polímeros , Vidrio/química , Dióxido de Silicio/química , Elastómeros
12.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630912

RESUMEN

Zn-containing dense monodispersed bioactive glass nanoparticles (Zn-BAGNPs) have been developed to deliver therapeutic inorganic trace elements, including Si, Ca, Sr, and Zn, to the cells through the degradation process, as delivery carriers for stimulating bone regeneration because of their capacity to induce osteogenic differentiation. The sol-gel-derived dense silica nanoparticles (SiO2-NPs) were first synthesized using the modified Stöber method, prior to incorporating therapeutic cations through the heat treatment process. The successfully synthesized monodispersed Zn-BAGNPs (diameter of 130 ± 20 nm) were homogeneous in size with spherical morphology. Ca, Sr and Zn were incorporated through the two-step post-functionalization process, with the nominal ZnO ratio between 0 and 2 (0, 0.5, 1.0, 1.5 and 2.0). Zn-BAGNPs have the capacity for continuous degradation and simultaneous ion release in SBF and PBS solutions due to their amorphous structure. Zn-BAGNPs have no in vitro cytotoxicity on the murine pre-osteoblast cell (MC3T3-E1) and periodontal ligament stem cells (PDLSCs), up to a concentration of 250 µg/mL. Zn-BAGNPs also stimulated osteogenic differentiation on PDLSCs treated with particles, after 2 and 3 weeks in culture. Zn-BAGNPs were not toxic to the cells and have the potential to stimulate osteogenic differentiation on PDLSCs. Therefore, Zn-BAGNPs are potential vehicles for therapeutic cation delivery for applications in bone and dental regenerations.

13.
J Dent ; 127: 104296, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116542

RESUMEN

OBJECTIVES: To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri­implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS: Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS: The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS: Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE: The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.


Asunto(s)
Aleaciones , Titanio , Humanos , Titanio/farmacología , Reproducibilidad de los Resultados , Propiedades de Superficie , Materiales Dentales/farmacología , Materiales Biocompatibles , Antiinflamatorios
14.
Mater Sci Eng C Mater Biol Appl ; 118: 111393, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254998

RESUMEN

OssiMend® Bioactive (Collagen Matrix Inc., NJ) is a three-component porous composite bone graft device of 45S5 Bioglass/carbonate apatite/collagen. Our in vitro studies showed that conditioned media of the dissolution products of OssiMend Bioactive stimulated primary human osteoblasts to form mineralized bone-like nodules in vitro in one week, in basal culture media (no osteogenic supplements). Osteoblast differentiation was followed by gene expression analysis and a mineralization assay. In contrast, the dissolution products from commercial OssiMend (Bioglass-free carbonate apatite/collagen scaffolds), or from 45S5 Bioglass particulate alone, did not induce the mineralization of the extracellular matrix, but did induce osteoblast differentiation to mature osteoblasts, evidenced by the strong upregulation of BGLAP and IBSP mRNA levels. The calcium ions and soluble silicon species released from 45S5 Bioglass particles and additional phosphorus release from OssiMend mediated the osteostimulatory effects. Medium conditioned with OssiMend Bioactive dissolution had a much higher concentration of phosphorus and silicon than media conditioned with OssiMend and 45S5 Bioglass alone. While OssiMend and OssiMend Bioactive led to calcium precipitation in cell culture media, OssiMend Bioactive produced a higher concentration of soluble silicon than 45S5 Bioglass and higher dissolution of phosphorus than OssiMend. These in vitro results suggest that adding 45S5 Bioglass to OssiMend produces a synergistic osteostimulation effect on primary human osteoblasts. In summary, dissolution products of a Bioglass/carbonate apatite/collagen composite scaffold (OssiMend® Bioactive) stimulate human osteoblast differentiation and mineralization of extracellular matrix in vitro without any osteogenic supplements. The mineralization was faster than for dissolution products of ordinary Bioglass.


Asunto(s)
Materiales Biocompatibles , Cerámica , Apatitas , Diferenciación Celular , Cerámica/farmacología , Colágeno , Vidrio , Humanos , Osteoblastos , Solubilidad
15.
Mater Sci Eng C Mater Biol Appl ; 119: 111495, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321596

RESUMEN

The friction and wear properties of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid materials that are proposed as cartilage tissue engineering materials were investigated against living articular cartilage. A testing rig was designed to allow testing against fresh bovine cartilage. The friction force and wear were compared for five compositions of the hybrid biomaterial articulating against freshly harvested bovine cartilage in diluted bovine calf serum. Under a non-migrating contact, the friction force increased and hence shear force applied to the opposing articular cartilage also increased, resulting in minor damage to the cartilage surface. This worse case testing scenario was used to discriminate between material formulations and revealed the increase in friction and damaged area was lowest for the hybrid containing the most silica. Further friction and wear tests on one hybrid formulation with an elastic modulus closest to that of cartilage were then conducted in a custom incubator system. This demonstrated that over a five day period the friction force, cell viability and glucosaminoglycan (GAG) release into the lubricant were similar between a cartilage-cartilage interface and the hybrid-cartilage interface, supporting the use of these materials for cartilage repair. These results demonstrate how tribology testing can play a part in the development of new materials for chondral tissue engineering. STATEMENT OF SIGNIFICANCE: Designing materials that maintain the low friction and wear of articular cartilage whilst supporting the growth of new tissue is critical if further damage is to be avoided during repair of cartilage defects. This work examines the tribological performance of a SiO2/PTHF/PCL-diCOOH hybrid material and demonstrates a testing protocol that could be applied to any proposed material for cartilage regeneration. Tribological tests demonstrated that changing the hybrid composition decreased friction and reduced damage to the cartilage counterface. This study demonstrates how tribological testing can be integrated into the design process to produce materials with a higher chance of clinical success.


Asunto(s)
Cartílago Articular , Animales , Materiales Biocompatibles/farmacología , Bovinos , Fricción , Fenómenos Mecánicos , Dióxido de Silicio
16.
J Mater Sci Mater Med ; 21(3): 847-53, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19820901

RESUMEN

X-ray microtomography (microCT) is a popular tool for imaging scaffolds designed for tissue engineering applications. The ability of synchrotron microCT to monitor tissue response and changes in a bioactive glass scaffold ex vivo were assessed. It was possible to observe the morphology of the bone; soft tissue ingrowth and the calcium distribution within the scaffold. A second aim was to use two newly developed compression rigs, one designed for use inside a laboratory based microCT machine for continual monitoring of the pore structure and crack formation and another designed for use in the synchrotron facility. Both rigs allowed imaging of the failure mechanism while obtaining stress-strain data. Failure mechanisms of the bioactive glass scaffolds were found not to follow classical predictions for the failure of brittle foams. Compression strengths were found to be 4.5-6 MPa while maintaining an interconnected pore network suitable for tissue engineering applications.


Asunto(s)
Huesos/patología , Sincrotrones , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Microtomografía por Rayos X/métodos , Animales , Materiales Biocompatibles/química , Diseño de Equipo , Vidrio , Imagenología Tridimensional , Masculino , Ratones , Presión , Estrés Mecánico , Rayos X
17.
Int J Implant Dent ; 6(1): 50, 2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918144

RESUMEN

BACKGROUND: With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. MATERIALS AND METHODS: Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. RESULTS: Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. CONCLUSION: There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.

18.
Biomed Mater ; 15(1): 015014, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31746779

RESUMEN

An electrospinning technique was used to produce three-dimensional (3D) bioactive glass fibrous scaffolds, in the SiO2-CaO sol-gel system, for wound healing applications. Previously, it was thought that 3D cotton wool-like structures could only be produced from sol-gel when the sol contained calcium nitrate, implying that the Ca2+ and its electronic charge had a significant effect on the structure produced. Here, fibres with a 3D appearance were also electrospun from compositions containing only silica. A polymer binding agent was added to inorganic sol-gel solutions, enabling electrospinning prior to bioactive glass network formation and the polymer was removed by calcination. While the addition of Ca2+ contributes to the 3D morphology, here we show that other factors, such as relative humidity, play an important role in producing the 3D cotton-wool-like macrostructure of the fibres. A human dermal fibroblast cell line (CD-18CO) was exposed to dissolution products of the samples. Cell proliferation and metabolic activity tests were carried out and a VEGF ELISA showed a significant increase in VEGF production in cells exposed to the bioactive glass samples compared to control in DMEM. A novel SiO2-CaO nanofibrous scaffold was created that showed tailorable physical and dissolution properties, the control and composition of these release products are important for directing desirable wound healing interactions.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Cicatrización de Heridas , Compuestos de Calcio/química , Línea Celular , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/metabolismo , Humanos , Iones , Espectroscopía de Resonancia Magnética , Ensayo de Materiales , Neovascularización Patológica , Óxidos/química , Transición de Fase , Polímeros/química , Regeneración , Dióxido de Silicio/química , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Biomed Mater ; 13(5): 055012, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995642

RESUMEN

A major challenge in bone tissue engineering is to develop patient-specific, defect-site specific grafts capable of triggering specific cell signaling pathways. We could programmably fabricate the 3D printed bone constructs via direct ink writing of silk-gelatin-bioactive glass (SF-G-BG) hybrids using two different compositions of melt-derived bioactive glasses (with and without strontium) and compared against commercial 45S5 Bioglass®. Physico-chemical characterization revealed that released ions from bioactive glasses inhibited the conformational change of Bombyx mori silk fibroin protein (from random coil to ß-sheet conformation), affecting printability of the SF-G-BG ink. In-depth molecular investigations showed that strontium containing SF-G-BG constructs demonstrated superior osteogenic differentiation of mesenchymal stem cells (TVA-BMSCs) over 21 days towards osteoblastic (marked by upregulated expression of runt related transcription factor, alkaline phosphatase, osteopontin, osteonectin, integrin bone sialoprotein, osteocalcin) and osteocytic (marked by podoplanin, dentin matrix acidic phosphoprotein, sclerostin) phenotype compared to other BG compositions and silk-gelatin alone. Moreover, ionic release from bioactive glasses in the silk-gelatin ink triggered the activation of signaling pathways (BMP-2, BMP-4 and IHH), which are critical in regulating bone formation in vivo. Overall, the presence of strontium containing bioactive glass in silk-gelatin matrices provided appropriate cues in regulating the development of custom-made 3D in vitro human bone constructs.


Asunto(s)
Materiales Biocompatibles/química , Trasplante Óseo , Cerámica/química , Fibroínas/química , Vidrio/química , Animales , Bombyx , Proteína Morfogenética Ósea 2/química , Sustitutos de Huesos , Bovinos , Proliferación Celular , Medios de Cultivo Condicionados , Gelatina/química , Humanos , Concentración de Iones de Hidrógeno , Iones , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Impresión Tridimensional , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Estroncio/química
20.
Biomaterials ; 28(7): 1404-13, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17141863

RESUMEN

In tissue engineering, porous scaffolds are often used as three-dimensional (3D) supports for tissue growth. In scaffold design, it is imperative to be able to quantify the pore sizes and more importantly the interconnects between the pores. X-ray micro-computed tomography (microCT) has become a popular tool for obtaining 3D images of scaffold biomaterials, however images are only qualitative. In this work, methods were developed for obtaining pore size distributions for both the macropores and their interconnects. Scaffolds have been developed, by foaming sol-gel derived bioactive glasses, which have the potential to fulfil the criteria for an ideal scaffold for bone tissue engineering. MicroCT images were obtained from scaffolds with different pore structures. The images were thresholded and three algorithms were applied in 3D to identify pores and interconnects and to obtain pore size distributions. The results were validated against mercury intrusion porosimetry and manual 3D image analysis. The microCT data were then meshed such that predictions of permeability as a function of changes in the pore network could be made. Such predictions will be useful for optimising bioreactor conditions for tissue engineering applications. These techniques would be suitable for many other types of scaffolds.


Asunto(s)
Imagenología Tridimensional , Ingeniería de Tejidos/estadística & datos numéricos , Materiales Biocompatibles , Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Cerámica , Humanos , Ensayo de Materiales , Permeabilidad , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA