Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(21): e2308381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447173

RESUMEN

3D bioprinting techniques have enabled the fabrication of irregular large-sized tissue engineering scaffolds. However, complicated customized designs increase the medical burden. Meanwhile, the integrated printing process hinders the cellular uniform distribution and local angiogenesis. A novel approach is introduced to the construction of sizable tissue engineering grafts by employing hydrogel 3D printing for modular bioadhesion assembly, and a poly (ethylene glycol) diacrylate (PEGDA)-gelatin-dopamine (PGD) hydrogel, photosensitive and adhesive, enabling fine microcage module fabrication via DLP 3D printing is developed. The PGD hydrogel printed micocages are flexible, allowing various shapes and cell/tissue fillings for repairing diverse irregular tissue defects. In vivo experiments demonstrate robust vascularization and superior graft survival in nude mice. This assembly strategy based on scalable 3D printed hydrogel microcage module could simplify the construction of tissue with large volume and complex components, offering promise for diverse large tissue defect repairs.


Asunto(s)
Hidrogeles , Ratones Desnudos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ratones , Ingeniería de Tejidos/métodos , Hidrogeles/química , Andamios del Tejido/química , Gelatina/química , Bioimpresión/métodos , Polietilenglicoles/química , Neovascularización Fisiológica/fisiología , Dopamina/metabolismo , Regeneración/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA