Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Evid Based Dent Pract ; 24(1): 101948, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38448117

RESUMEN

OBJECTIVES: An increasing number of studies have identified an association between oral health status and cognitive function. However, the effect of oral interventions, including oral health care, dental treatment and oral motor exercises, on cognitive function remains unclear. This systematic review examined whether oral interventions contribute to the long-term improvement of cognitive status. METHODS: Four databases were searched (MEDLINE, Web of Science, Cochrane Library, and ICHUSHI Web) to identify randomized and nonrandomized controlled trial studies and prospective cohort studies from inception until 1 September 2023, published in English or Japanese. The Cochrane risk of bias tool for randomized controlled trials and the risk of bias assessment tool for nonrandomized studies were used to assess bias risk. RESULTS: A total of 20 articles were included in the qualitative analysis; 13 articles were published in English, and 7 were published in Japanese. The implemented interventions were oral care in 8 studies, dental treatment in 8 studies, and oral motor exercise in 4 studies. One study found a significant effect on attention following oral care intervention. Some dental treatments influenced cognitive function, although a clear positive effect was not determined. In 1 study, attention and working memory improved in the chewing exercise group. CONCLUSIONS: Several studies verified the improvement effects of oral interventions, such as oral care, dental treatment, and oral motor exercise, on cognitive function or impairment. However, there was still a lack of conclusive evidence that such an intervention clearly improved cognitive function. To clarify the effects of oral interventions on cognitive function, it is necessary to examine participants, interventions, and outcome measures in detail.


Asunto(s)
Cognición , Salud Bucal , Humanos , Ensayos Clínicos Controlados como Asunto , Estudios Prospectivos
2.
J Neurophysiol ; 129(1): 211-219, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541608

RESUMEN

We previously demonstrated that accurate regulation of isometric contraction (IC) of jaw-closing muscles to counteract the ramp load applied to the jaw in the jaw-opening direction is achieved through the calibration between the two sensations arising from muscle spindles (MSs) and periodontal mechanoreceptors (PMRs). However, it remains unclear whether this calibration mechanism accurately works at any jaw positions, i.e., any vertical dimensions of occlusion (VDO). In the present study, we examined the effects of altering VDO on the IC of the masseter muscles in complete dentulous and edentulous subjects. At a VDO higher than the original VDO (O-VDO), the root mean square (RMS) of masseter EMG activity increased more steeply with a load increase, resulting in an over-counteraction. The regression coefficient of the load-RMS relationship significantly increased as the VDO was increased, suggesting that the overestimation became more pronounced with the VDO increases. Consistently also in the edentulous subjects, at a higher VDO than the O-VDO, a steeper increase in the RMS emerged with a delay in response to the same ramp load whereas a similar steeper increase was seen surprisingly even at a lower VDO. Thus, the edentulous subjects displayed a delayed overestimation of the ramp load presumably due to less and slowly sensitive mucous membrane mechanoreceptor (MMR) in alveolar ridge compared with the PMR. Taken together, the accurate calibration between the two sensations arising from MSs and PMRs/MMRs can be done only at the O-VDO, suggesting that the O-VDO is the best calibration point for performing accurate IC.NEW & NOTEWORTHY Since 1934, the vertical dimension of occlusion (VDO) in edentulous individuals has been anatomically determined mostly by referring to the resting jaw position. However, such a static method is not always accurate. Considering the dynamic nature of clenching/mastication, it is desirable to determine VDO dynamically. We demonstrate that VDO can be accurately determined by measuring masseter EMG during the voluntary isometric contraction of jaw-closing muscles exerted against the ramp load in the jaw-opening direction.


Asunto(s)
Contracción Isométrica , Músculo Masetero , Humanos , Músculo Masetero/fisiología , Contracción Isométrica/fisiología , Dimensión Vertical , Electromiografía , Husos Musculares , Contracción Muscular , Músculos Masticadores/fisiología
3.
Eur J Neurosci ; 41(8): 998-1012, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712773

RESUMEN

The primary sensory neurons supplying muscle spindles of jaw-closing muscles are unique in that they have their somata in the mesencephalic trigeminal nucleus (MTN) in the brainstem, thereby receiving various synaptic inputs. MTN neurons display bursting upon activation of glutamatergic synaptic inputs while they faithfully relay respective impulses arising from peripheral sensory organs. The persistent sodium current (IN aP ) is reported to be responsible for both the generation of bursts and the relay of impulses. We addressed how IN aP is controlled either to trigger bursts or to relay respective impulses as single spikes in MTN neurons. Protein kinase C (PKC) activation enhanced IN aP only at low voltages. Spike generation was facilitated by PKC activation at membrane potentials more depolarized than the resting potential. By injection of a ramp current pulse, a burst of spikes was triggered from a depolarized membrane potential whereas its instantaneous spike frequency remained almost constant despite the ramp increases in the current intensity beyond the threshold. A puff application of glutamate preceding the ramp pulse lowered the threshold for evoking bursts by ramp pulses while chelerythrine abolished such effects of glutamate. Dihydroxyphenylglycine, an agonist of mGluR1/5, also caused similar effects, and increased both the frequency and impedance of membrane resonance. Immunohistochemistry revealed that glutamatergic synapses are made onto the stem axons, and that mGluR1/5 and Nav1.6 are co-localized in the stem axon. Taken together, glutamatergic synaptic inputs onto the stem axon may be able to switch the relaying to the bursting mode.


Asunto(s)
Potenciales de Acción , Receptores de Glutamato Metabotrópico/fisiología , Células Receptoras Sensoriales/fisiología , Tegmento Mesencefálico/fisiología , Animales , Ácido Glutámico/farmacología , Ácido Glutámico/fisiología , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteína Quinasa C/fisiología , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura , Sinapsis/metabolismo , Tegmento Mesencefálico/ultraestructura
4.
Exp Brain Res ; 232(7): 2281-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687460

RESUMEN

It has been reported that the 90° arm abduction force counteracting external adduction loads appeared to be smaller under teeth clenching condition than under non-clenching condition. To elucidate the physiological mechanism underlying the possible inhibitory effect of teeth clenching on the arm abduction, we have attempted to quantify the difference in the force induced against the fast and slow ramp load between the arm abductions under teeth non-clenching and clenching conditions. When the load of adduction moment was linearly increased, the abductor force increased to a maximal isometric contraction force (MICF) and further increased to a maximal eccentric contraction force (MECF) with forced adduction. The MICF measured under teeth clenching was significantly lower than that under non-clenching, despite no significant difference in the MECF between the two conditions. The reduction in MICF caused by teeth clenching was enhanced by increasing the velocity of the load. These results suggest that clenching inhibits abduction force only during isometric contraction phase. The invariability of MECF would indicate the lack of involvement of fatigue in such inhibitory effects of clenching. To discover the source of the inhibition, we have examined the effects of teeth clenching on the stretch reflex in the deltoid muscle. The stretch reflex of deltoid muscles was inhibited during clenching, contrary to what was expected from the Jendrassik maneuver. Taken together, our results suggest that the teeth clenching reduced the MICF by depressing the recruitment of deltoid motoneurones presumably via the presynaptic inhibition of spindle afferent inputs onto those motoneurones.


Asunto(s)
Brazo/inervación , Contracción Isométrica/fisiología , Músculo Masetero , Reflejo de Estiramiento/fisiología , Diente/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Estadísticas no Paramétricas
5.
Behav Brain Res ; 452: 114547, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37331607

RESUMEN

There is an increasing number of studies showing that occlusal dysfunction impairs learning and memory. We previously demonstrated that the brain has a mechanism to calibrate between the activities of spindle afferents and periodontal-mechanoreceptor afferents for controlling the chewing movement, and the accurate calibration can be done only at the proper vertical dimension of occlusion (VDO). Then, the chewing at an inappropriate VDO may induce a severe mental stress due to a mal-calibration. However, it is not clear how the impairment of learning/memory progresses over the period of stress induced by occlusal dysfunction. We investigated by passive avoidance test how the behavior and learning/memory are altered in guinea pigs in which the VDO was raised by 2-3 mm over the period up to 8 weeks. We found that the guinea pigs reared under the raised occlusal-condition (ROC) for 1 week showed a very high sensitivity to electrical stimulation whereas this did not cause the memory consolidation in the 1st-day retention trial, suggesting that such hypersensitivity rather hampered the fear learning. In the guinea pigs reared under the ROC for 2 and 8 weeks, the learning ability was not largely affected and memory consolidation occurred similarly whereas the memory retention deteriorated more severely in the latter guinea pigs than in the former ones. In the guinea pigs reared under the ROC for 3 and 4 weeks, learning was severely impaired, and memory consolidation did not occur. These results suggest that the occlusal dysfunction for varying periods differentially impairs learning and memory.


Asunto(s)
Aprendizaje , Consolidación de la Memoria , Cobayas , Animales , Dimensión Vertical , Memoria , Masticación/fisiología
6.
Adv Healthc Mater ; 12(27): e2301081, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37380172

RESUMEN

Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.


Asunto(s)
Canales de Calcio , Mecanotransducción Celular , Mecanotransducción Celular/fisiología , Osteogénesis , Materiales Biocompatibles/farmacología , Calcio , Diferenciación Celular , Vía de Señalización Wnt
7.
J Neurophysiol ; 108(9): 2524-33, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22914653

RESUMEN

Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.


Asunto(s)
Ilusiones , Contracción Isométrica/fisiología , Músculo Masetero/fisiología , Husos Musculares/fisiología , Vibración , Adulto , Electromiografía , Femenino , Humanos , Masculino
8.
Front Cell Neurosci ; 16: 841239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558874

RESUMEN

Noradrenergic neurons in the locus coeruleus (LC) release noradrenaline (NA) that acts via volume transmission to activate extrasynaptic G-protein coupled receptors (GPCRs) in target cells throughout the brain. As the closest projection, the dorsal LC laterally adjoins the mesencephalic trigeminal nucleus (MTN), in which proprioceptive primary sensory neurons innervating muscle spindles of jaw-closing muscles are exceptionally located. MTN neurons express α2-adrenergic receptors (α2-ARs) and display hyperpolarization-activated cyclic nucleotide-gated (HCN) currents (Ihs), which is downregulated by α2-AR activation. To quantify the activity-dependent outcome of volume transmission of NA from LC to MTN, we investigated how direct LC activation inhibits Ih in MTN neurons by performing dual whole-cell recordings from LC and MTN neurons. Repetition of 20 Hz spike-train evoked with 1-s current-pulse in LC neurons every 30 s resulted in a gradual decrease in Ih evoked every 30 s, revealing a Hill-type relationship between the number of spike-trains in LC neurons and the degree of Ih inhibition in MTN neurons. On the other hand, when microstimulation was applied in LC every 30 s, an LC neuron repeatedly displayed a transient higher-frequency firing followed by a tonic firing at 5-10 Hz for 30 s. This subsequently caused a similar Hill-type inhibition of Ih in the simultaneously recorded MTN neuron, but with a smaller Hill coefficient, suggesting a lower signal transduction efficacy. In contrast, 20 Hz activity induced by a 1-s pulse applied every 5-10 s caused only a transient facilitation of Ih inhibition followed by a forced termination of Ih inhibition. Thus, the three modes of LC activities modulated the volume transmission to activate α2-adrenergic GPCR to differentially inhibit Ih in MTN neurons.

9.
Med Phys ; 48(9): 5327-5342, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34224166

RESUMEN

PURPOSE: Recently, high-precision radiotherapy systems have been developed by integrating computerized tomography or magnetic resonance imaging to enhance the precision of radiotherapy. For integration with additional imaging systems in a limited space, miniaturization and weight reduction of the linear accelerator (linac) system have become important. The aim of this work is to develop a compact medical linac based on 9.3 GHz X-band RF technology instead of the S-band RF technology typically used in the radiotherapy field. METHODS: The accelerating tube was designed by 3D finite-difference time-domain and particle-in-cell simulations because the frequency variation resulting from the structural parameters and processing errors is relatively sensitive to the operating performance of the X-band linac. Through the 3D simulation of the electric field distribution and beam dynamics process, we designed an accelerating tube to efficiently accelerate the electron beam and used a magnetron as the RF source to miniaturize the entire linac. In addition, a side-coupled structure was adopted to design a compact linac to reduce the RF power loss. To verify the performance of the linac, we developed a beam diagnostic system to analyze the electron beam characteristics and a quality assurance (QA) experimental environment including 3D lateral water phantoms to analyze the primary performance parameters (energy, dose rate, flatness, symmetry, and penumbra) The QA process was based on the standard protocols AAPM TG-51, 106, 142 and IAEA TRS-398. RESULTS: The X-band linac has high shunt impedance and electric field strength. Therefore, even though the length of the accelerating tube is 37 cm, the linac could accelerate an electron beam to more than 6 MeV and produce a beam current of more than 90 mA. The transmission ratio is measured to be approximately 30% ~ 40% when the electron gun operates in the constant emission region. The percent depth dose ratio at the measured depths of 10 and 20 cm was approximately 0.572, so we verified that the photon beam energy was matched to approximately 6 MV. The maximum dose rate was measured as 820 cGy/min when the source-to-skin distance was 80 cm. The symmetry was smaller than the QA standard and the flatness had a higher than standard value due to the flattening filter-free beam characteristics. In the case of the penumbra, it was not sufficiently steep compared to commercial equipment, but it could be compensated by improving additional devices such as multileaf collimator and jaw. CONCLUSIONS: A 9.3 GHz X-band medical linac was developed for high-precision radiotherapy. Since a more precise design and machining process are required for X-band RF technology, this linac was developed by performing a 3D simulation and ultraprecision machining. The X-band linac has a short length and a compact volume, but it can generate a validated therapeutic beam. Therefore, it has more flexibility to be coupled with imaging systems such as CT or MRI and can reduce the bore size of the gantry. In addition, the weight reduction can improve the mechanical stiffness of the unit and reduce the mechanical load.


Asunto(s)
Electrones , Aceleradores de Partículas , Simulación por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen
10.
Front Cell Neurosci ; 12: 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416504

RESUMEN

The muscle contraction during voluntary movement is regulated by activities of α- and γ-motoneurons (αMNs and γMNs, respectively). The tension of jaw-closing muscles can be finely tuned over a wide range. This excellent function is likely to be achieved by the specific populations of αMNs innervating jaw-closing muscles. Indeed, we have recently demonstrated that in the rat dorsolateral trigeminal motor nucleus (dl-TMN), the size distribution of αMNs was bimodal and the population of smaller αMNs showed a size distribution similar to that of γMNs, by immunohistochemically identifying αMNs and γMNs based on the expressions of estrogen-related receptor gamma (Err3) and neuronal DNA binding protein NeuN together with ChAT. This finding suggests the presence of αMNs as small as γMNs. However, differences in the electrophysiological membrane properties between αMNs and γMNs remain unknown also in the dl-TMN. Therefore, in the present study, we studied the electrophysiological membrane properties of MNs in the dl-TMN of infant rats at postnatal days 7-12 together with their morphological properties using whole-cell current-clamp recordings followed by immunohistochemical staining with an anti-NeuN and anti-ChAT antibodies. We found that the ChAT-positive and NeuN-positive αMNs were divided into two subclasses: the first one had a larger cell body and displayed a 4-aminopyridine (4-AP)-sensitive current while the second one had a smaller cell body and displayed a less prominent 4-AP-sensitive current and a low-threshold spike, suitable for their orderly recruitment. We finally found that γMNs showing ChAT-positive and NeuN-negative immunoreactivities had smaller cell bodies and displayed an afterdepolarization mediated by flufenamate-sensitive cation current. It is suggested that these electrophysiological and morphological features of MNs in the dl-TMN are well correlated with the precise control of occlusion.

11.
Brain Struct Funct ; 222(7): 3231-3239, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28326439

RESUMEN

Gamma-motoneurons (γMNs) play a crucial role in regulating isometric muscle contraction. The slow jaw-closing during mastication is one of the most functional isometric contractions, which is developed by the rank-order recruitment of alpha-motoneurons (αMNs) in a manner that reflects the size distribution of αMNs. In a mouse spinal motor nucleus, there are two populations of small and large MNs; the former was identified as a population of γMNs based on the positive expression of the transcription factor estrogen-related receptor 3 (Err3) and negative expression of the neuronal DNA-binding protein NeuN, and the latter as that of αMNs based on the opposite pattern of immunoreactivity. However, the differential identification of αMNs and γMNs in the trigeminal motor nucleus (TMN) remains an assumption based on the size of cell bodies that were retrogradely stained with HRP. We here examined the size distributions of αMNs and γMNs in the dorsolateral TMN (dl-TMN) by performing immunohistochemistry using anti-Err3 and anti-NeuN antibodies. The dl-TMN was identified by immunopositivity for vesicular glutamate transporter-1. Immunostaining for choline acetyltransferase and Err3/NeuN revealed that the dl-TMN is composed of 65% αMNs and 35% γMNs. The size distribution of αMNs was bimodal, while that of γMNs was almost the same as that of the population of small αMNs, suggesting the presence of αMNs as small as γMNs. Consistent with the size concept of motor units, the presence of smaller jaw-closing αMNs was coherent with the inclusion of jaw-closing muscle fibers with smaller diameters compared to limb muscle fibers.


Asunto(s)
Neuronas Motoras/clasificación , Neuronas Motoras/fisiología , Núcleo Motor del Nervio Trigémino/citología , Animales , Recuento de Células/métodos , Colina O-Acetiltransferasa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
12.
J Control Release ; 231: 68-76, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-26780174

RESUMEN

This work demonstrates the development of magnetically guided drug delivery systems and its potential on efficient anticancer therapy. The magnetically guided drug delivery system was successfully developed by utilizing superparamagnetic iron oxide nanoparticle, ß-cyclodextrin, and polymerized paclitaxel. Multivalent host-guest interactions between ß-cyclodextrin-conjugated superparamagnetic iron oxide nanoparticle and polymerized paclitaxel allowed to load the paclitaxel and the nanoparticle into the nano-assembly. Clusterized superparamagnetic iron oxide nanoparticles in the nano-assembly permitted the rapid and efficient targeted drug delivery. Compared to the control groups, the developed nano-assembly showed the enhanced anticancer effects in vivo as well as in vitro. Consequently, the strategy of the use of superparamagnetic nanoparticles and multivalent host-guest interactions has a promising potential for developing the efficient drug delivery systems.


Asunto(s)
Antineoplásicos/química , Nanopartículas de Magnetita/química , Paclitaxel/química , beta-Ciclodextrinas/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Magnetismo , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Paclitaxel/farmacología , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie , beta-Caroteno 15,15'-Monooxigenasa/inmunología
13.
eNeuro ; 3(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27482536

RESUMEN

Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 µm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 µm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.


Asunto(s)
Neuronas Motoras/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Núcleo Motor del Nervio Trigémino/metabolismo , Animales , Tamaño de la Célula , GMP Cíclico/metabolismo , Dendritas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Neuronas Motoras/citología , Proteínas del Tejido Nervioso , Oocitos , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , ARN Mensajero/metabolismo , Ratas Wistar , Técnicas de Cultivo de Tejidos , Núcleo Motor del Nervio Trigémino/citología , Xenopus laevis
14.
J Control Release ; 220(Pt B): 624-30, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26348389

RESUMEN

This work demonstrates the development of nitric oxide-releasing ointment and its potential on efficient wound healing. Nitric oxide-releasing polymer was successfully synthesized, which is composed of biocompatible Pluronic F127, branched polyethylenimine and 1-substituted diazen-1-ium-1,2-diolates. The synthesized nitric oxide-releasing polymer was incorporated into the PEG-based ointment which not only facilitated nitric oxide release in a slow manner, but also served as a moisturizer to enhance the wound healing. As compared to control groups, the nitric oxide-releasing ointment showed the accelerated wound closure with enhanced re-epithelialization, collagen deposition, and blood vessel formation in vivo. Therefore, this nitric oxide-based ointment presents the promising potential for the efficient strategy to heal the cutaneous wound.


Asunto(s)
Compuestos Azo/administración & dosificación , Donantes de Óxido Nítrico/administración & dosificación , Óxido Nítrico/metabolismo , Poloxámero/administración & dosificación , Polietileneimina/administración & dosificación , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Administración Cutánea , Animales , Compuestos Azo/síntesis química , Química Farmacéutica , Colágeno/metabolismo , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Donantes de Óxido Nítrico/síntesis química , Pomadas , Poloxámero/análogos & derivados , Poloxámero/síntesis química , Polietilenglicoles/química , Polietileneimina/análogos & derivados , Polietileneimina/síntesis química , Repitelización/efectos de los fármacos , Piel/irrigación sanguínea , Piel/metabolismo , Piel/patología , Factores de Tiempo
15.
Prog Brain Res ; 187: 163-71, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21111207

RESUMEN

The slow-closing phase of the mastication cycle plays a major role in the mastication of foods. However, the neuronal mechanism underlying the slow-closing phase remains unknown. The isometric contraction of jaw-closing muscles is developed through the recruitment of jaw-closing motoneurons during the slow-closing phase. It is well established that motor units are recruited depending on the order of sizes or input resistances (IRs) of motoneurons, which is known as the size principle. Two-pore-domain acid-sensitive K(+) (TASK1/3) channels are recently found to be the molecular correlates of the IR, and also found to be expressed in the masseter motoneurons. Here, we addressed the question whether spindle Ia inputs onto masseter motoneurons can induce the orderly recruitment of motoneurons in slice preparations of the rat brain using voltage-sensitive dye imaging and whole-cell patch-clamp methods. Voltage-sensitive dye imaging revealed the recruitment of many motoneurons in the whole nucleus of masseter in response to repetitive stimulation of the presumed spindle Ia inputs. Dual whole-cell recordings obtained from two adjacent motoneurons revealed the IR-ordered recruitment of motoneurons in response to repetitive stimulation of the presumed spindle Ia inputs. Thus, Ia inputs are likely to play a crucial role in the orderly recruitment of motoneurons of the trigeminal motor nucleus, which would be progressed during the slow-closing phase of the mastication cycle. Possible involvements of TASK channels in the orderly recruitment are discussed.


Asunto(s)
Músculo Masetero/inervación , Músculo Masetero/fisiología , Neuronas Motoras/fisiología , Neuronas Aferentes/fisiología , Reclutamiento Neurofisiológico/fisiología , Animales , Neuronas Motoras/citología , Contracción Muscular/fisiología , Neuronas Aferentes/citología , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Ratas
16.
Pain ; 150(1): 29-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20236764

RESUMEN

We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel currents (I(Na)) and action potentials (APs) in trigeminal ganglion (TG) neurons. However, co-application of QX-314 and capsaicin blocked I(Na) and APs in TRPV1-positive TG and dental nociceptive neurons, but not in TRPV1-negative TG neurons or in small neurons from TRPV1 knock-out mice. Immunohistochemistry revealed that TRPV1 is not expressed by trigeminal motor and trigeminal mesencephalic neurons. Capsaicin had no effect on rat trigeminal motor and proprioceptive mesencephalic neurons and therefore should not allow QX-314 to enter these cells. Co-application of QX-314 and capsaicin inhibited the jaw-opening reflex evoked by noxious electrical stimulation of the tooth pulp when applied to a sensory but not a motor nerve, and produced long-lasting analgesia in the orofacial area. These data show that selective block of pain signals can be achieved by co-application of QX-314 with TRPV1 agonists. This approach has potential utility in the trigeminal system for treating dental and facial pain.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Lidocaína/análogos & derivados , Neuronas/efectos de los fármacos , Nociceptores/fisiología , Dolor/fisiopatología , Ganglio del Trigémino/efectos de los fármacos , Análisis de Varianza , Anestésicos Locales/administración & dosificación , Animales , Capsaicina/administración & dosificación , Estimulación Eléctrica , Lidocaína/administración & dosificación , Ratones , Ratones Noqueados , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Ganglio del Trigémino/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA