Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(6): 1636-1647, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33639085

RESUMEN

Rapid increases of energy consumption and human dependency on fossil fuels have led to the accumulation of greenhouse gases and consequently, climate change. As such, major efforts have been taken to develop, test, and adopt clean renewable fuel alternatives. Production of bioethanol and biodiesel from crops is well developed, while other feedstock resources and processes have also shown high potential to provide efficient and cost-effective alternatives, such as landfill and plastic waste conversion, algal photosynthesis, as well as electrochemical carbon fixation. In addition, the downstream microbial fermentation can be further engineered to not only increase the product yield but also expand the chemical space of biofuels through the rational design and fine-tuning of biosynthetic pathways toward the realization of "designer fuels" and diverse future applications.


Asunto(s)
Biocombustibles/análisis , Desarrollo Sostenible , Vías Biosintéticas , Ciclo del Carbono , Humanos , Lignina/metabolismo , Residuos
2.
Nat Chem Biol ; 14(5): 451-457, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29556105

RESUMEN

Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.


Asunto(s)
Bacterias/enzimología , Microbiota , Tolueno/metabolismo , Acidobacteria/enzimología , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Anaerobiosis , Bacterias/genética , Biomasa , Carboxiliasas/metabolismo , Catálisis , Genes Bacterianos , Sedimentos Geológicos/microbiología , Lagos/microbiología , Lignina/química , Funciones de Verosimilitud , Metagenómica , Fenilacetatos/química , Filogenia , Proteómica , Proteínas Recombinantes/metabolismo , Aguas del Alcantarillado/microbiología
3.
Plant Cell ; 28(12): 2991-3004, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27895225

RESUMEN

Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming ∼25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Celulosa/metabolismo , Glicoesfingolípidos/metabolismo , Esfingolípidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
BMC Biotechnol ; 18(1): 54, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180895

RESUMEN

BACKGROUND: Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. RESULTS: Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. CONCLUSION: Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass.


Asunto(s)
Aciltransferasas/genética , Lignina/metabolismo , Oryza/enzimología , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Aciltransferasas/metabolismo , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Metab Eng ; 42: 115-125, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28606738

RESUMEN

Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products.


Asunto(s)
Alcoholes Grasos/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Eliminación de Gen , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
6.
Plant Cell Physiol ; 57(3): 568-79, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858288

RESUMEN

Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.


Asunto(s)
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Plantas/enzimología , Ácido Shikímico/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Aciltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Sitios de Unión , Biomasa , Vías Biosintéticas , Metabolismo de los Hidratos de Carbono , Hidroxibenzoatos/metabolismo , Modelos Moleculares , Oxidación-Reducción , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
7.
Plant Biotechnol J ; 13(9): 1241-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25583257

RESUMEN

Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Hidroliasas/metabolismo , Lignina/metabolismo , Arabidopsis/química , Arabidopsis/enzimología , Arabidopsis/metabolismo , Biomasa , Pared Celular/metabolismo , Corynebacterium glutamicum/enzimología , Ingeniería Genética/métodos , Lignina/análisis , Lignina/biosíntesis , Redes y Vías Metabólicas
8.
Appl Environ Microbiol ; 80(21): 6685-93, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25149518

RESUMEN

To facilitate enzyme and pathway engineering, a selection was developed for improved sesquiterpene titers in Saccharomyces cerevisiae. α-Bisabolene, a candidate advanced biofuel, was found to protect yeast against the disruptive action of nonionic surfactants such as Tween 20 (T20). An experiment employing competition between two strains of yeast, one of which makes twice as much bisabolene as the other, demonstrated that growth in the presence of T20 provided sufficient selective pressure to enrich the high-titer strain to form 97% of the population. Following this, various methods were used to mutagenize the bisabolene synthase (BIS) coding sequence, coupled with selection by subculturing in the presence of T20. Mutagenesis targeting the BIS active site did not yield an improvement in bisabolene titers, although mutants were found which made a mixture of α-bisabolene and ß-farnesene, another candidate biofuel. Based on evidence that the 3' end of the BIS mRNA may be unstable in yeast, we randomly recoded the last 20 amino acids of the enzyme and, following selection in T20, found a variant which increased specific production of bisabolene by more than 30%. Since T20 could enrich a mixed population, efficiently removing strains that produced little or no bisabolene, we investigated whether it could also be applied to sustain high product titers in a monoculture for an extended period. Cultures grown in the presence of T20 for 14 days produced bisabolene at titers up to 4-fold higher than cultures grown with an overlay of dodecane, used to sequester the terpene product, and 20-fold higher than cultures grown without dodecane.


Asunto(s)
Polisorbatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Tensoactivos/metabolismo , Terpenos/metabolismo , Ingeniería Metabólica , Mutagénesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selección Genética
9.
Plant Physiol ; 161(4): 1615-33, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23391577

RESUMEN

Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed.


Asunto(s)
Aciltransferasas/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/enzimología , Ácidos Cumáricos/metabolismo , Oryza/citología , Oryza/enzimología , Proteínas de Plantas/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Ácidos Cumáricos/química , ADN Bacteriano/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Pruebas Genéticas , Genoma de Planta/genética , Glucosa/metabolismo , Patrón de Herencia/genética , Lignina/metabolismo , Mutagénesis Insercional/genética , Mutación/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Penicillium/metabolismo , Fenotipo , Filogenia , Hojas de la Planta/metabolismo , Análisis de Componente Principal , Solubilidad , Ácido Trifluoroacético/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(50): 19949-54, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22123987

RESUMEN

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.


Asunto(s)
Biocombustibles/análisis , Biocombustibles/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Líquidos Iónicos/farmacología , Panicum/efectos de los fármacos , Biomasa , Escherichia coli/crecimiento & desarrollo , Hidrólisis/efectos de los fármacos , Lignina/metabolismo , Panicum/metabolismo
11.
Adv Mater ; 36(4): e2304364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37885340

RESUMEN

Self-assembling peptides are valuable building blocks to fabricate supramolecular biomaterials, which have broad applications from biomedicine to biotechnology. However, limited choices to induce different globular proteins into hydrogels hinder these designs. Here, an easy-to-implement and tunable self-assembling strategy, which employs Ure2 amyloidogenic peptide, are described to induce any target proteins to assemble into supramolecular hydrogels alone or in combination with notable compositional control. Furthermore, the collective effect of nanoscale interactions among amyloid nanofibrils and partially disordered elastomeric polypeptides are investigated. This led to many useful macroscopic material properties simultaneously emerging from one pure protein material, i.e. strong adhesion to any substrates under wet conditions, rapidly self--assembling into robust and porous hydrogels, adaptation to remodeling processes, strongly promoting cell adhesion, proliferation and differentiation. Moreover, he demonstrated this supramolecular material's robust performance in vitro and vivo for tissue engineering, cosmetic and hemostasis applications and exhibited superior performance compared to corresponding commercial counterparts. To the best of his knowledge, few pure protein-based materials could meet such seemingly mutually exclusive properties simultaneously. Such versatility renders this novel supramolecular nanomaterial as next-generation functional protein-based materials, and he demonstrated the sequence level modulation of structural order and disorder as an untapped principle to design new proteins.


Asunto(s)
Proteínas Amiloidogénicas , Proteínas de Insectos , Nanoestructuras , Péptidos/química , Nanoestructuras/química , Amiloide/química , Materiales Biocompatibles/química , Hidrogeles/química
12.
Plant Physiol ; 158(2): 654-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22158675

RESUMEN

The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Grasos/metabolismo , Lípidos de la Membrana/metabolismo , Poliésteres/metabolismo , Transferasas/genética , Arabidopsis/enzimología , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Transferasas/metabolismo
13.
Plant Biotechnol J ; 10(5): 609-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22458713

RESUMEN

Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C6C1 lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C6C1 monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis.


Asunto(s)
Arabidopsis/metabolismo , Hidroliasas/metabolismo , Lignina/biosíntesis , Tallos de la Planta/metabolismo , Arabidopsis/genética , Biomasa , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroliasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polimerizacion , Regiones Promotoras Genéticas , Transformación Genética
14.
ChemSusChem ; 13(17): 4455-4467, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32160408

RESUMEN

There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.


Asunto(s)
Hidrocarburos Aromáticos/química , Lignina/química , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/metabolismo , Aminoácidos/química , Biomasa , Ácidos Grasos/química , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/farmacología , Líquidos Iónicos/química , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
15.
Biomacromolecules ; 9(1): 1-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18092760

RESUMEN

Protein polymers (long-chain proteins in which a specific amino acid sequence "monomer" is repeated through the molecule) are found widely in nature, and these materials exhibit a diverse array of physical properties. One class of self-assembling proteins is hydrophobic-polar (HP) protein polymers capable of self-assembly under the appropriate solution conditions. We generated a chimeric protein consisting of an HP protein polymer monomer unit, EAK 1 (sequence n-AEAEAKAKAEAEAKAK-c), and a silaffin peptide, R5 (sequence: n-SSKKSGSYSGSKGSKRRIL-c). First identified in diatoms, silaffins represent a class of proteins and peptides capable of directing silica precipitation in vitro at neutral pH and ambient temperatures. The EAK 1-R5 chimera demonstrated self-assembly into hydrogels and the ability to direct silica precipitation in vitro. This chimera is capable of generating silica morphologies and feature sizes significantly different from those achievable with the R5 peptide alone, indicating that fusions of silaffins with self-assembling proteins may be a route to controlling the morphology of artificially produced silica matrices.


Asunto(s)
Péptidos/química , Polímeros/química , Dióxido de Silicio/química , Secuencia de Aminoácidos , Hidrogeles , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Concentración Osmolar
16.
Bioresour Technol ; 239: 496-506, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28535986

RESUMEN

Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a ß-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by ß-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.


Asunto(s)
Celobiosa , Lignina , Reactores Biológicos , Celulosa , Hidrólisis , beta-Glucosidasa
17.
Phytochemistry ; 67(15): 1621-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16780905

RESUMEN

Natural rubber is produced by a rubber transferase (a cis-prenyltransferase). Rubber transferase uses allylic pyrophosphate to initiate the rubber molecule and isopentenyl pyrophosphate (IPP) to form the polymer. Rubber biosynthesis also requires a divalent metal cation. Understanding how molecular weight is regulated is important because high molecular weight is required for high quality rubber. We characterized the in vitro effects of Mg(2+) on the biosynthetic rate of rubber produced by an alternative natural rubber crop, Parthenium argentatum (guayule). The affinity of the rubber transferase from P. argentatum for IPP.Mg was shown to depend on the Mg(2+) concentration in a similar fashion to the H. brasiliensis rubber transferase, although to a less extreme degree. Also, in vitro Mg(2+) concentration significantly affects rubber molecular weight of both species, but molecular weight is less sensitive to Mg(2+) concentration in P. argentatum than in H. brasiliensis.


Asunto(s)
Asteraceae/metabolismo , Magnesio/farmacología , Goma , Cinética , Peso Molecular
18.
Curr Opin Biotechnol ; 14(5): 475-83, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14580576

RESUMEN

Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.


Asunto(s)
Aciltransferasas/biosíntesis , Bacterias/metabolismo , Ingeniería Biomédica , Plásticos/metabolismo , Bacterias/química , Técnicas Microbiológicas , Ingeniería de Proteínas
19.
Int J Biol Macromol ; 36(4): 232-40, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16055181

RESUMEN

Peptides with alternating hydrophobic and polar amino acids have been shown to form stable beta-sheet secondary structures and self-assemble into hydrogel-like matrices in the presence of physiological salt concentrations. We hypothesized that the sequence and steric size differences of non-polar residues can affect the balance of peptide intermolecular forces in solution that drive self-assembly. To test this hypothesis, we designed a library of artificial amphiphilic peptides based on the sequence (FEFEFKFK)2 by substituting combinations of the non-polar residues glycine, alanine, valine, leucine and isoleucine for phenylalanine. Peptide structure and self-assembly were characterized using scanning electron microscopy, the Thioflavin T assay, transmission electron microscopy, X-ray fiber diffraction and circular dichroism spectroscopy. The sequence and steric size of non-polar residues are shown to cause variations in peptide secondary structures and create significant differences in the matrix morphology of self-assembled peptides.


Asunto(s)
Péptidos/química , Alanina/química , Secuencias de Aminoácidos , Amiloide/química , Benzotiazoles , Dicroismo Circular , Rojo Congo/farmacología , Biblioteca de Genes , Glicina/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Isoleucina/química , Leucina/química , Sustancias Macromoleculares/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Fenilalanina/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Temperatura , Tiazoles/química , Rayos Ultravioleta , Valina/química , Difracción de Rayos X
20.
Phytochemistry ; 64(1): 123-34, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12946411

RESUMEN

Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP)

Asunto(s)
Difosfatos/metabolismo , Difosfatos/farmacología , Inhibidores Enzimáticos/farmacología , Magnesio/metabolismo , Manganeso/metabolismo , Transferasas/antagonistas & inhibidores , Transferasas/metabolismo , Asteraceae/enzimología , Radioisótopos de Carbono , Difosfatos/química , Activación Enzimática/efectos de los fármacos , Ficus/química , Ficus/enzimología , Hevea/química , Hevea/enzimología , Cinética , Magnesio/química , Magnesio/farmacología , Manganeso/química , Manganeso/farmacología , Metales/análisis , Metales/farmacología , Goma/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA