Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Biomater ; 176: 99-115, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142795

RESUMEN

Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.


Asunto(s)
Colágeno , Matriz Extracelular , Animales , Bovinos , Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Tendones , Adipocitos , Ingeniería de Tejidos/métodos , Diferenciación Celular , Materiales Biocompatibles/farmacología , Andamios del Tejido/química
2.
Acta Biomater ; 176: 277-292, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244656

RESUMEN

Repair of functionally graded biological interfaces requires joining dissimilar materials such as hard bone to soft tendon/ligament, with re-injuries/re-tears expected to be minimized by incorporating biomimicking, stress-reducing features within grafts. At bone-tendon interfaces (entheses), stress can be reduced via angled insertion, geometric flaring, mechanical gradation, and interdigitation of tissues. Here, we incorporated enthesis attributes into 3D in silico and physical models of a unique suture anchor-tendon hybrid graft (SATHG) and investigated their effects on stress reduction via finite element analyses (FEA) studies. Over 20 different simulations altering SATHG angulation, flaring, mechanical gradation, and interdigitation identified an optimal design, which included 90° angulation, 25° flaring, and a compliant (ascending then descending) mechanical gradient in SATHG's bone-to-tendon-like transitional region. This design reduced peak stress concentration factor (SCF) by 43.6 % relative to an ascending-only mechanical gradient typically used in hard-to-soft tissue engineering. To verify FEA results, SATHG models were fabricated using a photocrosslinkable bone-tendon-like polyurethane (QHM polymer) for ex vivo tensile assessment. Tensile testing showed that ultimate load (132.9 N), displacement-at-failure (1.78 mm), stiffness (135.4 N/mm), and total work-to-failure (422.1 × 10-3 J) were highest in the optimized design. Furthermore, to assess envisioned usage, SATHG pull-out testing and 6-week in vivo implantation into large, 0.5-cm segmental supraspinatus tendon defects was performed. SATHG pull-out testing showed secure bone attachment while histological assessment such as hematoxylin and eosin (H&E) together with Safranin-O staining showed biocompatibility including enthesis regeneration. This work demonstrates that engineering biomaterials with FEA-optimized, enthesis-like attributes shows potential for enhancing hard-to-soft tissue repair. STATEMENT OF SIGNIFICANCE: Successful repair of hard-to-soft tissue injuries is challenging due to high stress concentrations within bone-tendon/ligament grafts that mechanically compromise repair strength. While stress-reducing gradient biomaterials have been reported, little-to-no attention has focused on other bone-tendon/ligament interface (enthesis) features. To this end, a unique bone-tendon graft (SATHG) was developed by combining two common orthopaedic devices along with biomimetic incorporation of four enthesis-like features to reduce stress and encourage widespread clinician adoption. Notably, utilizing designs based on natural stress dissipation principles such as anchor insertion angle, geometric flaring, and mechanical gradation reduced stress by 43.6 % in silico, which was confirmed ex vivo, while in vivo studies showed SATHG's ability to support native enthesis regeneration. Thus, SATHG shows promise for hard-to-soft tissue repairs.


Asunto(s)
Lesiones del Manguito de los Rotadores , Anclas para Sutura , Humanos , Tendones/patología , Manguito de los Rotadores/metabolismo , Huesos/patología , Lesiones del Manguito de los Rotadores/metabolismo , Materiales Biocompatibles/metabolismo
3.
Acta Biomater ; 154: 108-122, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272687

RESUMEN

Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.


Asunto(s)
Polímeros , Lesiones del Manguito de los Rotadores , Ratas , Ratones , Humanos , Animales , Poliuretanos/farmacología , Anhídridos , Tendones , Diferenciación Celular , Materiales Biocompatibles , Lesiones del Manguito de los Rotadores/cirugía , Andamios del Tejido/química
4.
J Mater Chem B ; 9(35): 7205-7215, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33710248

RESUMEN

Hyaluronic acid (HA)-based biomaterials have been demonstrated to promote wound healing and tissue regeneration, owing to the intrinsic and important role of HA in these processes. A deeper understanding of the biological functions of HA would enable better informed decisions on applications involving HA-based biomaterial design. HA and fibronectin are both major components of the provisional extracellular matrix (ECM) during wound healing and regeneration. Both biomacromolecules exhibit the same spatiotemporal distribution, with fibronectin possessing direct binding sites for HA. As HA is one of the first components present in the wound healing bed, we hypothesized that HA may be involved in the deposition, and subsequently fibrillogenesis, of fibronectin. This hypothesis was tested by exposing cultures of mesenchymal stromal cells (MSCs), which are thought to be involved in the early phase of wound healing, to high molecular weight HA (HMWHA). The results showed that treatment of human bone marrow derived MSCs (bmMSCs) with exogenous HMWHA increased fibronectin fibril formation during early ECM deposition. On the other hand, partial depletion of endogenous HA led to a drastic impairment of fibronectin fibril formation, despite detectable granular presence of fibronectin in the perinuclear region, comparable to observations made under the well-established ROCK inhibition-mediated impairment of fibronectin fibrillogenesis. These findings suggest the functional involvement of HA in effective fibronectin fibrillogenesis. The hypothesis was further supported by the co-alignment of fibronectin, HA and integrin α5 at sites of ongoing fibronectin fibrillogenesis, suggesting that HA might be directly involved in fibrillar adhesions. Given the essential function of fibronectin in ECM assembly and maturation, HA may play a major enabling role in initiating and propagating ECM deposition. Thus, HA, as a readily available biomaterial, presents practical advantages for de novo ECM-rich tissue formation in tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Ácido Hialurónico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Humanos , Ensayo de Materiales , Cicatrización de Heridas
5.
Tissue Eng Part A ; 26(11-12): 602-612, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31950880

RESUMEN

Temporal and spatial presentations of biological cues are critical for tissue engineering. There is a great need in improving the incorporation of bioagent(s) (specifically growth factor(s) [GF(s)]) onto three-dimensional scaffolds. In this study, we developed a process to combine additive manufacturing (AM) technology with acoustic droplet ejection (ADE) technology to control GF distribution. More specifically, we implemented ADE to control the distribution of recombinant human bone morphogenetic protein-2 (rhBMP-2) onto polycaprolactone (PCL)-based tissue engineering constructs (TECs). Three substrates were used in this study: (1) succinimide-terminated PCL (PCL-N-hydroxysuccinimide [NHS]) as model material, (2) alkali-treated PCL (PCL-NaOH) as first control material, and (3) fibrin-coated PCL (PCL-Fibrin) as second control material. It was shown that our process enables a pattern of BMP-2 spots of ∼250 µm in diameter with ∼700 µm center-to-center spacing. An initial concentration of BMP-2 higher than 300 µg/L was required to retain a detectable amount of GF on the substrate after a wash with phosphate-buffered solution. However, to obtain detectable osteogenic differentiation of C2C12 cells, the initial concentration of BMP-2 higher than 750 µg/L was needed. The cells on PCL-NHS samples showed spatial alkaline phosphatase staining correlating with local patterns of BMP-2, although the intensity was lower than the controls (PCL-NaOH and PCL-Fibrin). Our results have demonstrated that the developed AM-ADE process holds great promise in creating TECs with highly controlled GF patterning. Impact statement The combined process of additive manufacturing with acoustic droplet ejection to control growth factor (GF) distribution across three-dimensional (3D) porous scaffolds that is presented in this study enables creating 3D tissue engineering constructs with highly controlled GF patterning. Such constructs enable temporal and spatial presentations of biological cues for enhancing cell migration and differentiation and eventually the formation of targeted tissues in vitro and in vivo.


Asunto(s)
Impresión Tridimensional , Ingeniería de Tejidos/métodos , Animales , Proteína Morfogenética Ósea 2/química , Línea Celular , Humanos , Poliésteres/química , Andamios del Tejido/química
6.
J Mech Behav Biomed Mater ; 65: 356-372, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27631173

RESUMEN

Vascularization of tissue engineering constructs (TECs) in vitro is of critical importance for ensuring effective and satisfactory clinical outcomes upon implantation of TECs. Biomechanical properties of TECs have remarkable influence on the in vitro vascularization of TECs. This work utilized in vitro experiments and finite element analysis to investigate endothelial patterns in hybrid constructs of soft collagen gels and rigid macroporous poly(ε-caprolactone)-ß-tricalcium phosphate (PCL-ß-TCP) scaffold seeded/embedded with human umbilical vein endothelial cells (HUVECs) for bone tissue engineering applications. We first fabricated and characterized well-defined porous PCL-ß-TCP scaffolds with identical pore size (500µm) but different strut sizes (200 and 400µm) using additive manufacturing (AM) technology, and then assessed the HUVEC׳s proliferation and morphogenesis within collagen, PCL-ß-TCP scaffold, and the collagen-scaffold hybrid construct. Results showed that, in the hybrid construct, the cell population in the collagen component dropped by day 7 but then increased by day 14. Also, cells migrated onto the struts of the scaffold component, proliferated over time, and formed networks on the thinner struts (i.e., 200µm). Also, the thinner struts resulted in formation of long linear cellular cords structures within the pores. Finite element simulation demonstrated principal stress patterns similar to the observed cell-network pattern. It is probable that the scaffold component modulated patterns of principal stresses in the collagen component as biomechanical cues for reorganization of cell network patterns. Also, the scaffold component significantly improved the mechanical integrity of hydrogel component in the hybrid construct for weight-bearing applications. These results have collectively indicated that the manipulation of micro-architecture of scaffold could be an effective means to further regulate and guide desired cellular response in hybrid constructs.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Hidrogeles/análisis , Ingeniería de Tejidos , Andamios del Tejido , Fosfatos de Calcio , Células Cultivadas , Colágeno , Humanos , Poliésteres
7.
J Biomater Appl ; 29(4): 557-65, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24913612

RESUMEN

One of the main challenges for clinical implementation of small diameter vascular grafts (SDVGs) is their limited hemocompatibility. Important design specifications for such grafts include features that minimize the long-term risks of restenosis, fouling, and thrombus formation. In our lab, we have developed elastomeric hollow fiber membranes (HFMs), using a phase inversion method, as candidates for SDVGs. Here, we present our results for in vitro hemocompatibility testing of our HFM under flow and static conditions. Our results showed that the polymer-based HFMs do not damage the integrity of human red blood cells (RBCs) as shown by their low hemolytic extent (less than 2%). When analyzed for blood cell lysis using lactate dehydrogenase (LDH) activity as an indicator, no significant differences were observed between blood exposed to our HFMs and uncoagulated blood. Analysis of protein adsorption showed a low concentration of proteins deposited on the surfaces of HFM after 24 h. Platelet adhesion profiles using human platelet-rich plasma (PRP) showed that a low level of platelets adhered to the HFMs after 24 h, indicating minimal thrombotic potential. Under the majority of conditions, no significant differences were observed between medical-grade polymers and our HFMs. Eventual optimization of hemocompatible elastomeric HFM vessel grafts could lead to improved tissue vascularization as well as vascularized, tissue-engineered scaffolds for organ repair.


Asunto(s)
Prótesis Vascular , Elastómeros , Adsorción , Materiales Biocompatibles/química , Proteínas Sanguíneas/metabolismo , Hemólisis , Humanos , Técnicas In Vitro , L-Lactato Deshidrogenasa/sangre , Ácido Láctico/química , Ensayo de Materiales , Adhesividad Plaquetaria , Poliésteres , Polímeros/química , Poliuretanos/química , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA