RESUMEN
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues as insufficient drug amount at diseased regions, high adverse effects of released drugs, and unintentionally premature drug release to noninflamed gastrointestinal regions. Herein, the prepared budesonide-loaded Eudragit S 100/Capryol 90 nanocapsules for the treatment of inflammatory bowel disease. Nanocapsules were prepared efficiently by nanoprecipitation technique and composed mainly of the pH-sensitive Eudragit S 100 polymeric coat with a semisynthetic Capryol 90 oily core. Full 31 × 21 factorial design was applied to obtain optimized nanocapsules. Optimal nanocapsules showed mean particle size of 171 nm with lower polydispersity index indicating the production of monodispersed system and negative zeta-potential of - 37.6 mV. Optimized nanocapsules showed high encapsulation efficiency of 83.4% with lower initial rapid release of 10% for first 2 h and higher rapid cumulative release of 72% after 6 h. The therapeutic activity of the prepared budesonide-loaded nanocapsules was evaluated using a rat colitis model. Disease activity score, macroscopical examination, blood glucose level, and histopathological assessment showed marked improvements over that free drug suspension. Obtained results demonstrate that the budesonide-loaded Eudragit S 100 nanocapsules are an effective colon-targeting nanosystem for the treatment of inflammatory bowel disease. Capryol 90 was found to be a successful, and even preferred, alternative to benzyl benzoate, which is commonly employed as the oil core of such nanocapsules.