Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanomedicine ; 58: 102751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705222

RESUMEN

Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.


Asunto(s)
Sistemas de Liberación de Medicamentos , Paclitaxel , Polietilenglicoles , Riboflavina , Paclitaxel/farmacología , Paclitaxel/química , Riboflavina/farmacología , Riboflavina/química , Animales , Humanos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Ratones Endogámicos BALB C , Polímeros/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
2.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673796

RESUMEN

In addition to post-extraction bleeding, pronounced alveolar bone resorption is a very common complication after tooth extraction in patients undergoing anticoagulation therapy. The novel, biodegenerative, polyurethane adhesive VIVO has shown a positive effect on soft tissue regeneration and hemostasis. However, the regenerative potential of VIVO in terms of bone regeneration has not yet been explored. The present rodent study compared the post-extraction bone healing of a collagen sponge (COSP) and VIVO in the context of ongoing anticoagulation therapy. According to a split-mouth design, a total of 178 extraction sockets were generated under rivaroxaban treatment, of which 89 extraction sockets were treated with VIVO and 89 with COSP. Post-extraction bone analysis was conducted via in vivo micro-computed tomography (µCT), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) after 5, 10, and 90 days. During the observation time of 90 days, µCT analysis revealed that VIVO and COSP led to significant increases in both bone volume and bone density (p ≤ 0.001). SEM images of the extraction sockets treated with either VIVO or COSP showed bone regeneration in the form of lamellar bone mass. Ratios of Ca/C and Ca/P observed via EDX indicated newly formed bone matrixes in both treatments after 90 days. There were no statistical differences between treatment with VIVO or COSP. The hemostatic agents VIVO and COSP were both able to prevent pronounced bone loss, and both demonstrated a strong positive influence on the bone regeneration of the alveolar ridge post-extraction.


Asunto(s)
Anticoagulantes , Regeneración Ósea , Extracción Dental , Microtomografía por Rayos X , Animales , Regeneración Ósea/efectos de los fármacos , Extracción Dental/efectos adversos , Ratas , Masculino , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Adhesivos Tisulares/farmacología , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/tratamiento farmacológico , Colágeno/metabolismo
3.
Small ; 19(43): e2208042, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376850

RESUMEN

Fasting has many health benefits, including reduced chemotherapy toxicity and improved efficacy. It is unclear how fasting affects the tumor microenvironment (TME) and tumor-targeted drug delivery. Here the effects of intermittent (IF) and short-term (STF) fasting are investigated on tumor growth, TME composition, and liposome delivery in allogeneic hepatocellular carcinoma (HCC) mouse models. To this end, mice are inoculated either subcutaneously or intrahepatically with Hep-55.1C cells and subjected to IF for 24 d or to STF for 1 d. IF but not STF significantly slows down tumor growth. IF increases tumor vascularization and decreases collagen density, resulting in improved liposome delivery. In vitro, fasting furthermore promotes the tumor cell uptake of liposomes. These results demonstrate that IF shapes the TME in HCC towards enhanced drug delivery. Finally, when combining IF with liposomal doxorubicin treatment, the antitumor efficacy of nanochemotherapy is found to be increased, while systemic side effects are reduced. Altogether, these findings exemplify that the beneficial effects of fasting on anticancer therapy outcomes go beyond modulating metabolism at the molecular level.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Liposomas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ayuno Intermitente , Nanomedicina , Microambiente Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral
4.
Biomacromolecules ; 24(10): 4444-4453, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36753733

RESUMEN

Polymeric micelles are among the most extensively used drug delivery systems. Key properties of micelles, such as size, size distribution, drug loading, and drug release kinetics, are crucial for proper therapeutic performance. Whether polymers from more controlled polymerization methods produce micelles with more favorable properties remains elusive. To address this question, we synthesized methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers of three different comparable molecular weights (∼9, 13, and 20 kDa), via both conventional free radical (FR) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were subsequently employed to prepare empty and paclitaxel-loaded micelles. While FR polymers had relatively high dispersities (D ∼ 1.5-1.7) compared to their RAFT counterparts (D ∼ 1.1-1.3), they formed micelles with similar pharmaceutical properties (e.g., size, size distribution, critical micelle concentration, cytotoxicity, and drug loading and retention). Our findings suggest that pharmaceutical properties of mPEG-b-p(HPMAm-Bz) micelles do not depend on the synthesis route of their constituent polymers.


Asunto(s)
Electrones , Micelas , Polimerizacion , Polietilenglicoles , Polímeros , Portadores de Fármacos
5.
Mol Pharm ; 19(9): 3256-3266, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35905480

RESUMEN

Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.


Asunto(s)
Microburbujas , Tensoactivos , Acústica , Medios de Contraste/química , Humanos , Octoxinol , Preparaciones Farmacéuticas , Polímeros/química , Polisorbatos , Tensoactivos/química
6.
J Am Chem Soc ; 142(28): 12133-12139, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32524819

RESUMEN

Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.


Asunto(s)
Imidazoles/farmacología , Glicoproteínas de Membrana/agonistas , Profármacos/farmacología , Quinolinas/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , beta-Galactosidasa/inmunología , Animales , Imidazoles/química , Imidazoles/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Profármacos/química , Profármacos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Propiedades de Superficie , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo
7.
Bioconjug Chem ; 31(12): 2691-2696, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33237762

RESUMEN

Riboflavin carrier protein (RCP) and riboflavin transporters (RFVTs) have been reported to be highly overexpressed in various cancer cells. Hence, targeting RCP and RFVTs using riboflavin may enhance tumor accumulation and internalization of drug delivery systems. To test this hypothesis, butyl-based 3-arm peptostar polymers were synthesized consisting of a lysine core (10 units per arm) and a sarcosine shell (100 units per arm). The end groups of the arms and the core were successfully modified with riboflavin and the Cy5.5 fluorescent dye, respectively. While in phosphate buffered saline the functionalized peptostars showed a bimodal behavior and formed supramolecular structures over time, they were stable in the serum maintaining their hydrodynamic diameter of 12 nm. Moreover, the polymers were biocompatible and the uptake of riboflavin targeted peptostars in A431 and PC3 cells was higher than in nontargeted controls and could be blocked competitively. In vivo, the polymers showed a moderate passive tumor accumulation, which was not significantly different between targeted and nontargeted peptostars. Nonetheless, at the histological level, internalization into tumor cells was strongly enhanced for the riboflavin-targeted peptostars. Based on these results, we conclude that passive accumulation is dominating the accumulation of peptostars, while tumor cell internalization is strongly promoted by riboflavin targeting.


Asunto(s)
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Polímeros/química , Polímeros/metabolismo , Riboflavina/metabolismo , Transporte Biológico , Carbocianinas/química , Humanos , Lisina/química , Ensayo de Materiales , Proteínas de Transporte de Membrana/metabolismo , Células PC-3 , Sarcosina/química
8.
Mol Pharm ; 17(8): 2840-2848, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32589435

RESUMEN

Microbubbles (MB) are routinely used ultrasound (US) contrast agents that have recently attracted increasing attention as stimuli-responsive drug delivery systems. To better understand MB-based drug delivery, we studied the role of drug hydrophobicity and molecular weight on MB loading, shelf-life stability, US properties, and drug release. Eight model drugs, varying in hydrophobicity and molecular weight, were loaded into the shell of poly(butyl cyanoacrylate) (PBCA) MB. In the case of drugs with progesterone as a common structural backbone (i.e., for corticosteroids), loading capacity and drug release correlated well with hydrophobicity and molecular weight. Conversely, when employing drugs with no structural similarity (i.e., four different fluorescent dyes), loading capacity and release did not correlate with hydrophobicity and molecular weight. All model drug-loaded MB formulations could be equally efficiently destroyed upon exposure to US. Together, these findings provide valuable insights on how the physicochemical properties of (model) drug molecules affect their loading and retention in and US-induced release from polymeric MB, thereby facilitating the development of drug-loaded MB formulations for US-triggered drug delivery.


Asunto(s)
Enbucrilato/química , Preparaciones Farmacéuticas/química , Polímeros/química , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Microburbujas , Peso Molecular , Nanopartículas/química
9.
Arterioscler Thromb Vasc Biol ; 38(1): 40-48, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191926

RESUMEN

OBJECTIVE: The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. APPROACH AND RESULTS: Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [P<0.001] and ≈5× [P<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. CONCLUSIONS: Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Moléculas de Adhesión Celular/metabolismo , Endotelio Vascular/diagnóstico por imagen , Imagen Molecular/métodos , Receptores de Superficie Celular/metabolismo , Ultrasonografía , Animales , Biomarcadores/metabolismo , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Estenosis Carotídea/fisiopatología , Moléculas de Adhesión Celular/genética , Células Cultivadas , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Enbucrilato/administración & dosificación , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Técnica del Anticuerpo Fluorescente , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones Noqueados para ApoE , Microburbujas , Receptores de Superficie Celular/genética , Flujo Sanguíneo Regional , Factores de Tiempo , Remodelación Vascular
10.
Nano Lett ; 17(8): 4665-4674, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28715227

RESUMEN

Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (∼10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, ∼7 nm, t1/2 ∼ 1 h) and larger, longer-circulating (40 kDa, ∼13 nm, t1/2 ∼ 13 h) riboflavin-targeted branched PEG polymers were synthesized, and their biodistribution and target site accumulation were evaluated in mice bearing angiogenic squamous cell carcinoma (A431) and desmoplastic prostate cancer (PC3) xenografts. The tumor accumulation of the 10 kDa PEG was characterized by rapid intercompartmental exchange and significantly improved upon active targeting with riboflavin (RF). The 40 kDa PEG accumulated in tumors four times more efficiently than the small polymer, but its accumulation did not profit from active RF-targeting. However, RF-targeting enhanced the cellular internalization in both tumor models and for both polymer sizes. Interestingly, the nanocarriers' cell-uptake in tumors was not directly correlated with the extent of accumulation. For example, in both tumor models the small RF-PEG accumulated much less strongly than the large passively targeted PEG but showed significantly higher intracellular amounts 24 h after iv administration. Additionally, the size of the polymer determined its preferential uptake by different tumor cell compartments: the 10 kDa RF-PEGs most efficiently targeted cancer cells, whereas the highest uptake of the 40 kDa RF-PEGs was observed in tumor-associated macrophages. These findings imply that drug carriers with sizes in the range of therapeutic antibodies show balanced properties with respect to passive accumulation, tissue penetration, and active targeting. Besides highlighting the potential of RF-mediated (cancer) cell targeting, we show that strong tumor accumulation does not automatically mean high cellular uptake and that the nanocarriers' size plays a critical role in cell- and compartment-specific drug targeting.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Neoplasias de la Próstata/tratamiento farmacológico , Riboflavina/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Xenoinjertos , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Distribución Tisular
11.
Bioconjug Chem ; 27(9): 2048-61, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27412680

RESUMEN

Riboflavin (RF) is an essential vitamin for cellular metabolism. Recent studies have shown that RF is internalized through RF transporters, which are highly overexpressed by prostate and breast cancer cells, as well as by angiogenic endothelium. Here, we present an optimized synthesis protocol for preparing tailor-made amphiphilic phospholipid-based RF derivatives using phosphoramidite chemistry. The prepared RF amphiphile-RfdiC14-can be inserted into liposome formulations for targeted drug delivery. The obtained liposomes had a hydrodynamic size of 115 ± 5 nm with narrow size distribution (PDI 0.06) and a zeta potential of -52 ± 3 mV. In vitro uptake studies showed that RfdiC14-containing liposomes were strongly internalized in HUVEC, PC3, and A431 cells, in a specific and transporter-mediated manner. To assess the RF targeting potential in vivo, an amphiphile containing PEG spacer between RF and a lipid was prepared-DSPE-PEG-RF. The latter was successfully incorporated into long-circulating near-infrared-labeled liposomes (141 ± 1 nm in diameter, PDI 0.07, zeta potential of -33 ± 1 mV). The longitudinal µCT/FMT biodistribution studies in PC3 xenograft bearing mice demonstrated similar pharmacokinetics profile of DSPE-PEG-RF-functionalized liposomes compared to control. The subsequent histological evaluation of resected tumors revealed higher degree of tumor retention as well as colocalization of targeted liposomes with endothelial cells emphasizing the targeting potential of RF amphiphiles and their utility for the lipid-containing drug delivery systems.


Asunto(s)
Portadores de Fármacos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanomedicina , Fosfolípidos/química , Neoplasias de la Próstata/metabolismo , Riboflavina/química , Animales , Transporte Biológico , Línea Celular Tumoral , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Humanos , Liposomas , Masculino , Ratones , Ratones Desnudos , Riboflavina/metabolismo , Riboflavina/farmacocinética , Distribución Tisular
12.
Arterioscler Thromb Vasc Biol ; 35(6): 1366-73, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25838431

RESUMEN

OBJECTIVE: Cardiovascular interventions induce damage to the vessel wall making antithrombotic therapy inevitable until complete endothelial recovery. Without a method to accurately determine the endothelial status, many patients undergo prolonged anticoagulation therapy, denying them any invasive medical procedures, such as surgical operations and dental interventions. Therefore, we aim to introduce molecular ultrasound imaging of the vascular cell adhesion molecule (VCAM)-1 using targeted poly-n-butylcyanoacrylate microbubbles (MB(VCAM-1)) as an easy accessible method to monitor accurately the reendothelialization of vessels. APPROACH AND RESULTS: ApoE(-/-) mice were fed with an atherogenic diet for 1 and 12 weeks and subsequently, endothelial denudation was performed in the carotid arteries using a guidewire. Molecular ultrasound imaging was performed at different time points after denudation (1, 3, 7, and 14 days). An increased MB(VCAM-1) binding after 1 day, a peak after 3 days, and a decrease after 7 days was found. After 12 weeks of diet, MB(VCAM-1) binding also peaked after 3 days but remained high until 7 days, indicating a delay in endothelial recovery. Two-photon laser scanning microscopy imaging of double fluorescence staining confirmed the exposure of VCAM-1 on the superficial layer after arterial injury only during the healing phase. After complete reendothelialization, VCAM-1 expression persisted in the subendothelial layer but was not reachable for the MBV(CAM-1) anymore. CONCLUSION: Molecular ultrasound imaging with MB(VCAM-1) is promising to assess vascular damage and to monitor endothelial recovery after arterial interventions. Thus, it may become an important diagnostic tool supporting the development of adequate therapeutic strategies to personalize anticoagulant and anti-inflammatory therapy after cardiovascular intervention.


Asunto(s)
Aterosclerosis/cirugía , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/cirugía , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Biomarcadores/metabolismo , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Arterias Carótidas/cirugía , Modelos Animales de Enfermedad , Enbucrilato , Endotelio Vascular/lesiones , Endotelio Vascular/patología , Procedimientos Endovasculares , Ratones , Microburbujas , Microscopía Confocal , Ultrasonografía , Cicatrización de Heridas
13.
Radiology ; 273(1): 10-28, 2014 10.
Artículo en Inglés | MEDLINE | ID: mdl-25247562

RESUMEN

Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential.


Asunto(s)
Medios de Contraste , Diagnóstico por Imagen , Nanopartículas , Materiales Biocompatibles/química , Medios de Contraste/química , Humanos , Nanopartículas/química
14.
Adv Sci (Weinh) ; 11(15): e2306139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342634

RESUMEN

Despite its high potential, non-viral gene therapy of cancer remains challenging due to inefficient nucleic acid delivery. Ultrasound (US) with microbubbles (MB) can open biological barriers and thus improve DNA and mRNA passage. Polymeric MB are an interesting alternative to clinically used lipid-coated MB because of their high stability, narrow size distribution, and easy functionalization. However, besides choosing the ideal MB, it remains unclear whether nanocarrier-encapsulated mRNA should be administered separately (co-administration) or conjugated to MB (co-formulation). Therefore, the impact of poly(n-butyl cyanoacrylate) MB co-administration with mRNA-DOTAP/DOPE lipoplexes or their co-formulation on the transfection of cancer cells in vitro and in vivo is analyzed. Sonotransfection improved mRNA delivery into 4T1 breast cancer cells in vitro with co-administration being more efficient than co-formulation. In vivo, the co-administration sonotransfection approach also resulted in higher transfection efficiency and reached deeper into the tumor tissue. On the contrary, co-formulation mainly promoted transfection of endothelial and perivascular cells. Furthermore, the co-formulation approach is much more dependent on the US trigger, resulting in significantly lower off-site transfection. Thus, the findings indicate that the choice of co-administration or co-formulation in sonotransfection should depend on the targeted cell population, tolerable off-site transfection, and the therapeutic purpose.


Asunto(s)
Enbucrilato , Neoplasias , Humanos , Microburbujas , Neoplasias/terapia , Transfección , Ultrasonografía
15.
J Mater Chem B ; 12(10): 2511-2522, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38334758

RESUMEN

Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.


Asunto(s)
Medios de Contraste , Microburbujas , Ratones , Animales , Ultrasonografía/métodos , Polímeros/química , Imagen Multimodal
16.
J Control Release ; 357: 52-66, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958399

RESUMEN

Activation of immune cells is an essential process in innate and adaptive immunity. A high number of immune cell activation pathways have been discovered, which are stimulated via various intra- and extracellular receptors. Small-molecule and macromolecular agonists have been identified to target immune receptors in preclinical research and clinical practice. However, current immunostimulants are often associated with undesired side effects and/or low potency in vivo. These two issues have been addressed with multiscale biomaterials. In this review, we summarize and discuss the most explored intra/extracellular immune receptors which have been targeted with immunoactivating biomaterials. To target intracellular immune receptors, nano/microscale materials have been employed to deliver agonists into the endo/lysosomes or the cytoplasm. To target surface immune receptors, nano-to-macroscale biomaterials have been engineered to engage with them to activate immune cells. In this context, biomaterials are not only the drug carriers, but also function as part of the immunostimulants. The biomaterials-based modalities have shown clearly enhanced immunoactivation potency and decreased side effects compared to native immunostimulants. It is envisaged that nano-to-macroscale biomaterials will greatly contribute to the development of more effective strategies for immunoactivation, which have the potential to reshape future vaccination and immunotherapy.


Asunto(s)
Materiales Biocompatibles , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Adyuvantes Inmunológicos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Inmunidad Adaptativa , Inmunoterapia
17.
Drug Deliv Transl Res ; 13(4): 915-923, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36592287

RESUMEN

Despite the introduction of multiple new drugs and combination therapies, conventional dexamethasone remains a cornerstone in the treatment of multiple myeloma (MM). Its application is, however, limited by frequent adverse effects of which the increased infection rate may have the strongest clinical impact. The efficacy-safety ratio of dexamethasone in MM may be increased by encapsulation in long-circulating PEG-liposomes, thereby both enhancing drug delivery to MM lesions and reducing systemic corticosteroid exposure. We evaluated the preliminary safety and feasibility of a single intravenous (i.v.) infusion of pegylated liposomal dexamethasone phosphate (Dex-PL) in heavily pretreated relapsing or progressive symptomatic MM patients within a phase I open-label non-comparative interventional trial at two dose levels. In the 7 patients that were enrolled (prior to having to close the study prematurely due to slow recruitment), Dex-PL was found to be well tolerated and, as compared to conventional dexamethasone, no new or unexpected adverse events were detected. Pharmacokinetic analysis showed high and persisting concentrations of dexamethasone in the circulation for over a week after i.v. administration, likely caused by the long-circulation half-life of the liposomes that retain dexamethasone as the inactive phosphate prodrug form, something which could significantly limit systemic exposure to the active parent drug. Thus, despite the limitations of this small first-in-man trial, Dex-PL seems safe and well tolerated without severe side effects. Follow-up studies are needed to confirm this in a larger patient cohort and to evaluate if i.v. Dex-PL can provide a safer and more efficacious dexamethasone treatment option for MM.


Asunto(s)
Mieloma Múltiple , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona/efectos adversos , Liposomas/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/etiología , Mieloma Múltiple/patología , Resultado del Tratamiento
18.
Sci Rep ; 13(1): 19919, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964111

RESUMEN

The structural process of bone and periodontal ligament (PDL) remodeling during long-term orthodontic tooth movement (OTM) has not been satisfactorily described yet. Although the mechanism of bone changes in the directly affected alveolar bone has been deeply investigated, detailed knowledge about specific mechanism of PDL remodeling and its interaction with alveolar bone during OTM is missing. This work aims to provide an accurate and user-independent analysis of the alveolar bone and PDL remodeling following a prolonged OTM treatment in mice. Orthodontic forces were applied using a Ni-Ti coil-spring in a split-mouth mice model. After 5 weeks both sides of maxillae were scanned by high-resolution micro-CT. Following a precise tooth movement estimation, an extensive 3D analysis of the alveolar bone adjacent to the first molar were performed to estimate the morphological and compositional parameters. Additionally, changes of PDL were characterized by using a novel 3D model approach. Bone loss and thinning, higher connectivity as well as lower bone mineral density were found in both studied regions. Also, a non-uniformly widened PDL with increased thickness was observed. The extended and novel methodology in this study provides a comprehensive insight about the alveolar bone and PDL remodeling process after a long-duration OTM.


Asunto(s)
Ligamento Periodontal , Técnicas de Movimiento Dental , Ratones , Animales , Técnicas de Movimiento Dental/métodos , Ligamento Periodontal/diagnóstico por imagen , Remodelación Ósea
19.
J Control Release ; 354: 784-793, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599395

RESUMEN

Multidrug resistance (MDR) reduces the efficacy of chemotherapy. Besides inducing the expression of drug efflux pumps, chemotherapy treatment alters the composition of the tumor microenvironment (TME), thereby potentially limiting tumor-directed drug delivery. To study the impact of MDR signaling in cancer cells on TME remodeling and nanomedicine delivery, we generated multidrug-resistant 4T1 triple-negative breast cancer (TNBC) cells by exposing sensitive 4T1 cells to gradually increasing doxorubicin concentrations. In 2D and 3D cell cultures, resistant 4T1 cells are presented with a more mesenchymal phenotype and produced increased amounts of collagen. While sensitive and resistant 4T1 cells showed similar tumor growth kinetics in vivo, the TME of resistant tumors was enriched in collagen and fibronectin. Vascular perfusion was also significantly increased. Fluorophore-labeled polymeric (∼10 nm) and liposomal (∼100 nm) drug carriers were administered to mice with resistant and sensitive tumors. Their tumor accumulation and penetration were studied using multimodal and multiscale optical imaging. At the whole tumor level, polymers accumulate more efficiently in resistant than in sensitive tumors. For liposomes, the trend was similar, but the differences in tumor accumulation were insignificant. At the individual blood vessel level, both polymers and liposomes were less able to extravasate out of the vasculature and penetrate the interstitium in resistant tumors. In a final in vivo efficacy study, we observed a stronger inhibitory effect of cellular and microenvironmental MDR on liposomal doxorubicin performance than free doxorubicin. These results exemplify that besides classical cellular MDR, microenvironmental drug resistance features should be considered when aiming to target and treat multidrug-resistant tumors more efficiently.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Liposomas , Resistencia a Antineoplásicos , Doxorrubicina , Resistencia a Múltiples Medicamentos , Polímeros/farmacología , Línea Celular Tumoral , Microambiente Tumoral
20.
Drug Deliv Transl Res ; 13(5): 1195-1211, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35816231

RESUMEN

Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvß3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvß3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvß3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application.


Asunto(s)
Integrina beta3 , Micelas , Distribución Tisular , Sistemas de Liberación de Medicamentos , Polímeros , Línea Celular Tumoral , Péptidos Cíclicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA