Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 509(7500): 376-80, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24670657

RESUMEN

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Lignina/metabolismo , Complejo Mediador/genética , Mutación/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustibles , Biomasa , Pared Celular/química , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/biosíntesis , Lignina/química , Complejo Mediador/química , Complejo Mediador/deficiencia , Complejo Mediador/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transcripción Genética/genética
2.
Plant Cell ; 27(5): 1529-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25944103

RESUMEN

Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Propanoles/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Lignina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Oximas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo
3.
Plant Physiol ; 169(4): 2409-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26491147

RESUMEN

The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Coenzima A Ligasas/metabolismo , Propanoles/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Coenzima A Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Isoenzimas , Lignina/metabolismo , Redes y Vías Metabólicas , Mutación , Filogenia , Regiones Promotoras Genéticas/genética , Propanoles/química , Metabolismo Secundario
4.
Anal Chem ; 87(18): 9436-42, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26291845

RESUMEN

Highly lignified vascular plant cell walls represent the majority of cellulosic biomass. Complete release of the biomass to deliver renewable energy by physical, chemical, and biological pretreatments is challenging due to the "protection" provided by polymerized lignin, and as such, additional tools to monitor lignin deposition and removal during plant growth and biomass deconstruction would be of great value. We developed a hyperspectral stimulated Raman scattering microscope with 9 cm(-1) spectral resolution and submicrometer spatial resolution. Using this platform, we mapped the aromatic ring of lignin, aldehyde, and alcohol groups in lignified plant cell walls. By multivariate curve resolution of the hyperspectral images, we uncovered a spatially distinct distribution of aldehyde and alcohol groups in the thickened secondary cell wall. These results collectively contribute to a deeper understanding of lignin chemical composition in the plant cell wall.


Asunto(s)
Arabidopsis/citología , Pared Celular/metabolismo , Lignina/metabolismo , Microscopía/métodos , Espectrometría Raman , Vibración , Alcoholes/metabolismo , Aldehídos/metabolismo , Arabidopsis/genética , Lignina/química , Mutación , Oxidación-Reducción
5.
Plant Physiol ; 164(2): 584-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24381065

RESUMEN

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Dexametasona/farmacología , Mutación/genética , Epidermis de la Planta/metabolismo , Metabolismo Secundario/efectos de los fármacos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Lignina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Propanoles/metabolismo , Ácido Salicílico/metabolismo , Metabolismo Secundario/genética , Solubilidad , Factores de Tiempo
6.
Plant J ; 76(3): 357-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23889038

RESUMEN

Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.


Asunto(s)
Pared Celular/metabolismo , Lignina/metabolismo , Células Vegetales/metabolismo , Arabidopsis , Benzofuranos , Ácidos Cumáricos , Cumarinas , Fluorescencia , Fenilpropionatos/metabolismo , Pinus , Propionatos/metabolismo , Protoplastos/metabolismo , Plantones/metabolismo
7.
J Struct Biol ; 184(2): 103-14, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24075949

RESUMEN

The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism.


Asunto(s)
Arabidopsis/ultraestructura , Tallos de la Planta/ultraestructura , Arabidopsis/metabolismo , Celulosa/metabolismo , Celulosa/ultraestructura , Microanálisis por Sonda Electrónica , Microfibrillas/ultraestructura , Minerales/metabolismo , Especificidad de Órganos , Epidermis de la Planta/ultraestructura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA