Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32883711

RESUMEN

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Celulosa/biosíntesis , Metiltransferasas/metabolismo , Mutación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adhesión Celular/genética , Pared Celular/genética , Celulosa/genética , Dinitrobencenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Metiltransferasas/genética , Microtúbulos/metabolismo , Pectinas/biosíntesis , Pectinas/genética , Pectinas/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Sulfanilamidas/farmacología , Ácidos Urónicos/metabolismo
2.
Biomacromolecules ; 24(11): 4759-4770, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704189

RESUMEN

Cellulose microfibrils (CMFs) are a major load-bearing component in plant cell walls. Thus, their structures have been studied extensively with spectroscopic and microscopic characterization methods, but the findings from these two approaches were inconsistent, which hampers the mechanistic understanding of cell wall mechanics. Here, we report the regiospecific assembly of CMFs in the periclinal wall of plant epidermal cells. Using sum frequency generation spectroscopic imaging, we found that CMFs are highly aligned in the cell edge region where two cells form a junction, whereas they are mostly isotropic on average throughout the wall thickness in the flat face region of the epidermal cell. This subcellular-level heterogeneity in the CMF alignment provided a new perspective on tissue-level anisotropy in the tensile modulus of cell wall materials. This finding also has resolved a previous contradiction between the spectroscopic and microscopic imaging studies, which paves a foundation for better understanding of the cell wall architecture, especially structure-geometry relationships.


Asunto(s)
Celulosa , Células Vegetales , Celulosa/química , Anisotropía , Microfibrillas/química , Pared Celular/química
3.
Biomacromolecules ; 20(2): 893-903, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30554514

RESUMEN

Model hemicellulose-cellulose composites that mimic plant cell wall polymer interactions were prepared by synthesizing deuterated bacterial cellulose in the presence of glucomannan or xyloglucan. Dilute acid pretreatment (DAP) of these materials was studied using small-angle neutron scattering, X-ray diffraction, and sum frequency generation spectroscopy. The macrofibril dimensions of the pretreated cellulose alone were smaller but with similar entanglement of macrofibrillar network as native cellulose. In addition, the crystallite size dimension along the (010) plane increased. Glucomannan-cellulose underwent similar changes to cellulose, except that the macrofibrillar network was more entangled after DAP. Conversely, in xyloglucan-cellulose the macrofibril dimensions and macrofibrillar network were relatively unchanged after pretreatment, but the cellulose Iß content was increased. Our results point to a tight interaction of xyloglucan with microfibrils while glucomannan only interacts with macrofibril surfaces. This study provides insight into roles of different hemicellulose-cellulose interactions and may help in improving pretreatment processes or engineering plants with decreased recalcitrance.


Asunto(s)
Celulosa/química , Polisacáridos/química , Pared Celular/química , Glucanos/química , Mananos/química , Plantas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Xilanos/química
4.
Proc Natl Acad Sci U S A ; 113(40): 11348-11353, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647923

RESUMEN

Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.


Asunto(s)
Pared Celular/enzimología , Celulosa/biosíntesis , Glucosiltransferasas/genética , Complejos Multiproteicos/química , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/química , Membrana Celular/enzimología , Pared Celular/genética , Celulosa/química , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/química , Microfibrillas/química , Microfibrillas/genética , Complejos Multiproteicos/genética
5.
Biochem J ; 470(2): 195-205, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348908

RESUMEN

Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components.


Asunto(s)
Bryopsida/química , Celulosa/química , Glucosiltransferasas/química , Proteínas de la Membrana/química , Microfibrillas/química , Proteínas de Plantas/química , Protoplastos/química , Lectinas de Plantas/química
6.
Plant Physiol ; 163(2): 907-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23995148

RESUMEN

Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm(-1) correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm(-1) intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm(-1), whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm(-1). Starch (amylose) gave an SFG peak at 2,904 cm(-1) (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to µm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Pared Celular/química , Celulosa/química , Análisis Espectral/métodos , Glucosiltransferasas/genética , Inflorescencia/metabolismo , Mutación/genética , Difracción de Rayos X
7.
Biomacromolecules ; 15(7): 2718-24, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24846814

RESUMEN

The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD). Crystallinity and ordering were assessed as the intensity of SFG signals in the CH/CH2 stretch vibration region (and confirmed by XRD), while Iα content was assessed by the relative intensity of the OH stretch vibration at 3240 cm(-1). A key finding is that the presence of xyloglucan in the culture medium greatly reduced Iα allomorph content but with a relatively small effect on cellulose crystallinity, whereas xylan resulted in a larger decrease in crystallinity with a relatively small decrease in the Iα fraction. Arabinoxylan and various pectins had much weaker effects on cellulose structure as assessed by SFG and XRD. Homogalacturonan with calcium ion reduced the SFG signal, evidently by changing the ordering of cellulose microfibrils. We propose that the distinct effects of matrix polysaccharides on cellulose crystal structure result, at least in part, from selective interactions of the backbone and side chains of matrix polysaccharides with cellulose chains during the formation of the microfibril.


Asunto(s)
Pared Celular/química , Celulosa/química , Pectinas/química , Conformación de Carbohidratos , Celulosa/ultraestructura , Cristalización , Cristalografía por Rayos X , Glucanos/química , Gluconacetobacter xylinus/química , Células Vegetales/química , Vibración , Xilanos/química
8.
Phys Chem Chem Phys ; 16(22): 10844-53, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24760365

RESUMEN

This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iß nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iß). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.


Asunto(s)
Pared Celular/química , Celulosa/química , Lino/química , Gluconacetobacter xylinus/química , Microfibrillas/química , Animales , Lino/citología , Estructura Molecular , Análisis Espectral , Urocordados/microbiología
9.
Sci Rep ; 13(1): 22007, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086837

RESUMEN

In plant cells, cellulose synthase complexes (CSCs) are nanoscale machines that synthesize and extrude crystalline cellulose microfibrils (CMFs) into the apoplast where CMFs are assembled with other matrix polymers into specific structures. We report the tissue-specific directionality of CSC movements of the xylem and interfascicular fiber walls of Arabidopsis stems, inferred from the polarity of CMFs determined using vibrational sum frequency generation spectroscopy. CMFs in xylems are deposited in an unidirectionally biased pattern with their alignment axes tilted about 25° off the stem axis, while interfascicular fibers are bidirectional and highly aligned along the longitudinal axis of the stem. These structures are compatible with the design of fiber-reinforced composites for tubular conduit and support pillar, respectively, suggesting that during cell development, CSC movement is regulated to produce wall structures optimized for cell-specific functions.


Asunto(s)
Arabidopsis , Arabidopsis/química , Microfibrillas/química , Celulosa/química , Pared Celular/química
10.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173053

RESUMEN

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Asunto(s)
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenasas de Función Mixta/metabolismo , Madera/metabolismo , Celulosa/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
11.
J Phys Chem B ; 126(35): 6629-6641, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36037433

RESUMEN

Vibrational sum frequency generation (SFG) spectroscopy can specifically probe molecular species non-centrosymmetrically arranged in a centrosymmetric or isotropic medium. This capability has been extensively utilized to detect and study molecular species present at the two-dimensional (2D) interface at which the centrosymmetry or isotropy of bulk phases is naturally broken. The same principle has been demonstrated to be very effective for the selective detection of non-centrosymmetric crystalline nanodomains interspersed in three-dimensional (3D) amorphous phases. However, the full spectral interpretation of SFG features has been difficult due to the complexity associated with the theoretical calculation of SFG responses of such 3D systems. This paper describes a numerical method to predict the relative SFG intensities of non-centrosymmetric nanodomains in 3D systems as functions of their size and concentration as well as their assembly patterns, i.e., the distributions of tilt, azimuth, and rotation angles with respect to the lab coordinate. We applied the developed method to predict changes in the CH and OH stretch modes characteristic to crystalline cellulose microfibrils distributed with various orders, which are relevant to plant cell wall structures. The same algorithm can also be applied to any SFG-active nanodomains interspersed in 3D amorphous matrices.


Asunto(s)
Pared Celular , Celulosa , Membrana Celular , Pared Celular/química , Celulosa/química , Análisis Espectral/métodos , Vibración
12.
Biomacromolecules ; 12(7): 2434-9, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21615075

RESUMEN

The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.


Asunto(s)
Betula/química , Pared Celular/química , Celulosa/análisis , Pinus taeda/química , Quercus/química , Betula/citología , Biomasa , Cristalización , Dinámicas no Lineales , Pinus taeda/citología , Quercus/citología , Espectrofotometría Infrarroja , Espectrometría Raman , Vibración
13.
Carbohydr Polym ; 255: 117328, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436171

RESUMEN

In crystalline cellulose I, all glucan chains are ordered from reducing ends to non-reducing ends. Thus, the polarity of individual chains is added forming a large dipole within the crystal. If one can engineer unidirectional alignment (parallel packing) of cellulose crystals, then it might be possible to utilize the material properties originating from polar crystalline structures. However, most post-synthesis manipulation methods reported so far can only achieve the uniaxial alignment with bi-directionality (antiparallel packing). Here, we report a method to induce the parallel packing of bacterial cellulose microfibrils by applying unidirectional shear stress during the synthesis and deposition through the rising bubble stream in a culture medium. Driving force for the alignment is explained with mathematical estimation of the shear stress. Evidences of the parallel alignment of crystalline cellulose Iα domains were obtained using nonlinear optical spectroscopy techniques.


Asunto(s)
Acetobacteraceae/química , Celulosa/química , Microfibrillas/química , Acetobacteraceae/fisiología , Aire/análisis , Fenómenos Biomecánicos , Reactores Biológicos , Celulosa/ultraestructura , Cristalización , Glucanos/química , Microfibrillas/ultraestructura , Reología , Estrés Mecánico
14.
J Phys Chem B ; 124(37): 8071-8081, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32805111

RESUMEN

Cellulose in plant cell walls are synthesized as crystalline microfibrils with diameters of 3-4 nm and lengths of around 1-10 µm. These microfibrils are known to be the backbone of cell walls, and their multiscale three-dimensional organization plays a critical role in cell wall functions including plant growth and recalcitrance to degradation. The mesoscale organization of microfibrils over a 1-100 nm range in cell walls is challenging to resolve because most characterization techniques investigating this length scale suffer from low spatial resolution, sample preparation artifacts, or inaccessibility of specific cell types. Here, we report a sum frequency generation (SFG) study determining the mesoscale polarity of cellulose microfibrils in intact plant cell walls. SFG is a nonlinear optical spectroscopy technique sensitive to the molecular-to-mesoscale order of noncentrosymmetric domains in amorphous matrices. However, the quantitative theoretical model to unravel the effect of polarity in packing of noncentrosymmetric domains on SFG spectral features has remained unresolved. In this work, we show how the phase synchronization principle of the SFG process is used to predict the relative intensities of vibrational modes with different polar angles from the noncentrosymmetric domain axis. Applying this model calculation for the first time and employing SFG microscopy, we found that cellulose microfibrils in certain xylem cell walls are deposited unidirectionally (or biased in one direction) instead of the bidirectional polarity which was believed to be dominant in plant cell walls from volume-averaged characterizations of macroscopic samples. With this advancement in SFG analysis, one can now determine the relative polarity of noncentrosymmetric domains such as crystalline biopolymers interspersed in amorphous polymer matrices, which will open opportunities to study new questions that have not been conceived in the past.


Asunto(s)
Pared Celular , Microfibrillas , Celulosa , Análisis Espectral , Vibración
15.
Proteomics ; 9(7): 1893-900, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19288524

RESUMEN

A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization, and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was resistant to autolysis, enabling repeated digestions of BSA over 40 days and successful peptide identification by LC-MS/MS. This active and stable form of immobilized trypsin was successfully employed in the digestion of yeast proteome extract with high reproducibility and within shorter time than conventional protein digestion using solution phase trypsin. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e., chymotrypsin), which makes it suitable for use in "real-world" proteomic applications. Overall, the biocatalytic nanofibers with trypsin aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.


Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/metabolismo , Nanoestructuras , Polímeros/metabolismo , Tripsina/metabolismo , Biocatálisis , Cromatografía Liquida , Estabilidad de Enzimas , Equipo Reutilizado , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Fragmentos de Péptidos , Proteínas/metabolismo , Proteómica/instrumentación , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
16.
J Phys Chem B ; 122(19): 5006-5019, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29697980

RESUMEN

Sum frequency generation (SFG) vibrational spectroscopy can selectively detect and analyze noncentrosymmetric components interspersed in amorphous matrices; this principle has been used for studies of nanoscale structure and mesoscale assembly of cellulose in plant cell walls. However, the spectral information averaged over a large area or volume cannot provide regiospecific or tissue-specific information of different cells in plants. This study demonstrates spatially resolved SFG analysis and imaging by combining a broad-band SFG spectroscopy system with an optical microscope. The system was designed to irradiate both narrow-band 800 nm and broad-band tunable IR beams through a single reflective objective lens, but from opposite sides of the surface normal direction of the sample. The developed technique was used to reveal inhomogeneous distributions of cellulose microfibrils within single cell walls, such as cotton fibers and onion epidermis as well as among different tissues in Arabidopsis inflorescence stems and bamboo culms. SFG microscopy can be used for vibrational spectroscopic imaging of other biological systems in complement to conventional Fourier transform infrared spectroscopy and confocal Raman microscopy.


Asunto(s)
Celulosa/química , Celulosa/metabolismo , Microfibrillas/química , Microscopía , Plantas/metabolismo , Arabidopsis/metabolismo , Bambusa , Pared Celular/metabolismo , Gossypium/metabolismo , Rayos Infrarrojos , Microfibrillas/metabolismo , Tallos de la Planta/química
17.
Carbohydr Polym ; 197: 337-348, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30007621

RESUMEN

The effect of dehydration of plant cell walls on the physical status of cellulose microfibrils (CMFs) interspersed in pectin matrices was studied. Vibrational sum frequency generation (SFG) spectroscopy analysis of cellulose revealed reversible changes in spectral features upon dehydration and rehydration of onion epidermal walls used as a model primary cell wall (PCW). Combined with microscopic imaging and indentation modulus data, such changes could be attributed to local strains in CMFs due to the collapse of the pectin matrix upon dehydration. X-ray diffraction (XRD) showed that the (200) spacing of cellulose in dried PCWs is larger than that of cellulose Iß obtained from tunicates. Thus, the modulus of CMFs in PCWs would be lower than those of highly-crystalline cellulose Iß and inhomogeneous local bending or strain of CMFs could occur readily during the physical collapse of pectin matrix due to dehydration.


Asunto(s)
Pared Celular/química , Celulosa/química , Microfibrillas/química , Deshidratación
18.
J Phys Chem Lett ; 8(1): 55-60, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27936745

RESUMEN

Vibrational sum-frequency-generation (SFG) spectroscopy is capable of selectively detecting crystalline biopolymers interspersed in amorphous polymer matrices. However, the spectral interpretation is difficult due to the lack of knowledge on how spatial arrangements of crystalline segments influence SFG spectra features. Here we report time-dependent density functional theory (TD-DFT) calculations of cellulose crystallites in intimate contact with two different polarities: parallel versus antiparallel. TD-DFT calculations reveal that the CH/OH intensity ratio is very sensitive to the polarity of the crystallite packing. Theoretical calculations of hyperpolarizability tensors (ßabc) clearly show the dependence of SFG intensities on the polarity of crystallite packing within the SFG coherence length, which provides the basis for interpretation of the empirically observed SFG features of native cellulose in biological systems.


Asunto(s)
Celulosa/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Polímeros/química , Teoría Cuántica , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral/métodos , Espectrometría Raman , Factores de Tiempo , Vibración
19.
J Phys Chem B ; 120(1): 102-16, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26718642

RESUMEN

A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).


Asunto(s)
Microscopía , Espectrofotometría Infrarroja , Vibración , Amplificadores Electrónicos , Monoterpenos Bicíclicos , Celulosa/análisis , Dimetilsulfóxido/análisis , Monoterpenos/análisis , Espectrofotometría Infrarroja/instrumentación , Titanio/química
20.
J Phys Chem B ; 119(49): 15138-49, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26615832

RESUMEN

Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iß crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.


Asunto(s)
Celulosa/química , Enlace de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA