Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857279

RESUMEN

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proteínas Hedgehog , Miosina Tipo II , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adhesión Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimiento Celular/genética , Epitelio/metabolismo , Morfogénesis/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación del Desarrollo de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 120(25): e2300374120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307487

RESUMEN

When evolution leads to differences in body size, organs generally scale along. A well-known example of the tight relationship between organ and body size is the scaling of mammalian molar teeth. To investigate how teeth scale during development and evolution, we compared molar development from initiation through final size in the mouse and the rat. Whereas the linear dimensions of the rat molars are twice that of the mouse molars, their shapes are largely the same. Here, we focus on the first lower molars that are considered the most reliable dental proxy for size-related patterns due to their low within-species variability. We found that scaling of the molars starts early, and that the rat molar is patterned equally as fast but in a larger size than the mouse molar. Using transcriptomics, we discovered that a known regulator of body size, insulin-like growth factor 1 (Igf1), is more highly expressed in the rat molars compared to the mouse molars. Ex vivo and in vivo mouse models demonstrated that modulation of the IGF pathway reproduces several aspects of the observed scaling process. Furthermore, analysis of IGF1-treated mouse molars and computational modeling indicate that IGF signaling scales teeth by simultaneously enhancing growth and by inhibiting the cusp-patterning program, thereby providing a relatively simple mechanism for scaling teeth during development and evolution. Finally, comparative data from shrews to elephants suggest that this scaling mechanism regulates the minimum tooth size possible, as well as the patterning potential of large teeth.


Asunto(s)
Mamíferos Proboscídeos , Ratas , Ratones , Animales , Diente Molar , Musarañas , Tamaño Corporal , Cognición
3.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195802

RESUMEN

Tooth formation requires complex signaling interactions both within the oral epithelium and between the epithelium and the underlying mesenchyme. Previous studies of the Wnt/ß-catenin pathway have shown that tooth formation is partly inhibited in loss-of-function mutants, and gain-of-function mutants have perturbed tooth morphology. However, the stage at which Wnt signaling is first important in tooth formation remains unclear. Here, using an Fgf8-promoter-driven, and therefore early, deletion of ß-catenin in mouse molar epithelium, we found that loss of Wnt/ß-catenin signaling completely deletes the molar tooth, demonstrating that this pathway is central to the earliest stages of tooth formation. Early expression of a dominant-active ß-catenin protein also perturbs tooth formation, producing a large domed evagination at early stages and supernumerary teeth later on. The early evaginations are associated with premature mesenchymal condensation marker, and are reduced by inhibition of condensation-associated collagen synthesis. We propose that invagination versus evagination morphogenesis is regulated by the relative timing of epithelial versus mesenchymal cell convergence regulated by canonical Wnt signaling. Together, these studies reveal new aspects of Wnt/ß-catenin signaling in tooth formation and in epithelial morphogenesis more broadly.


Asunto(s)
Diente Molar/crecimiento & desarrollo , Diente Molar/metabolismo , Odontogénesis/fisiología , Vía de Señalización Wnt/fisiología , Animales , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Mesodermo/metabolismo , Ratones , Diente Molar/citología , Morfogénesis/fisiología , Odontogénesis/genética , beta Catenina/metabolismo
4.
Nature ; 563(7732): 514-521, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356216

RESUMEN

During both embryonic development and adult tissue regeneration, changes in chromatin structure driven by master transcription factors lead to stimulus-responsive transcriptional programs. A thorough understanding of how stem cells in the skeleton interpret mechanical stimuli and enact regeneration would shed light on how forces are transduced to the nucleus in regenerative processes. Here we develop a genetically dissectible mouse model of mandibular distraction osteogenesis-which is a process that is used in humans to correct an undersized lower jaw that involves surgically separating the jaw bone, which elicits new bone growth in the gap. We use this model to show that regions of newly formed bone are clonally derived from stem cells that reside in the skeleton. Using chromatin and transcriptional profiling, we show that these stem-cell populations gain activity within the focal adhesion kinase (FAK) signalling pathway, and that inhibiting FAK abolishes new bone formation. Mechanotransduction via FAK in skeletal stem cells during distraction activates a gene-regulatory program and retrotransposons that are normally active in primitive neural crest cells, from which skeletal stem cells arise during development. This reversion to a developmental state underlies the robust tissue growth that facilitates stem-cell-based regeneration of adult skeletal tissue.


Asunto(s)
Regeneración Ósea , Mandíbula/citología , Mandíbula/fisiología , Cresta Neural/citología , Osteogénesis por Distracción , Células Madre/citología , Animales , Cromatina/genética , Cromatina/metabolismo , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Masculino , Mandíbula/cirugía , Ratones , Ratones Endogámicos C57BL , Retroelementos/genética , Transducción de Señal , Células Madre/metabolismo , Transcripción Genética
5.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523147

RESUMEN

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Asunto(s)
Antígeno AC133/metabolismo , Cilios/metabolismo , Incisivo/citología , Antígeno AC133/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
6.
Development ; 147(2)2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980484

RESUMEN

The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.


Asunto(s)
Homeostasis , Odontogénesis/genética , Regeneración/fisiología , Diente/citología , Diente/metabolismo , Animales , Humanos , Morfogénesis , Transducción de Señal
7.
Development ; 147(18)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958507

RESUMEN

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Asunto(s)
Investigación Dental/métodos , Huesos Faciales/fisiología , Cráneo/fisiología , Animales , Bases de Datos Factuales , Humanos , Reproducibilidad de los Resultados , Investigadores
8.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29180573

RESUMEN

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.


Asunto(s)
Ameloblastos/metabolismo , Antígenos de Diferenciación/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Incisivo/embriología , Factores de Transcripción SOXB1/biosíntesis , Células Madre/metabolismo , Ameloblastos/citología , Animales , Antígenos de Diferenciación/genética , Incisivo/citología , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Células Madre/citología
9.
Nature ; 512(7512): 44-8, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25079326

RESUMEN

The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.


Asunto(s)
Evolución Biológica , Fósiles , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Animales , Simulación por Computador , Ectodisplasinas/deficiencia , Ectodisplasinas/genética , Ectodisplasinas/farmacología , Femenino , Eliminación de Gen , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Técnicas In Vitro , Masculino , Ratones , Diente Molar/anatomía & histología , Diente Molar/efectos de los fármacos , Diente Molar/crecimiento & desarrollo , Fenotipo , Transducción de Señal/efectos de los fármacos , Diente/efectos de los fármacos
10.
Bioessays ; 40(12): e1800140, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387177

RESUMEN

Efforts from diverse disciplines, including evolutionary studies and biomechanical experiments, have yielded new insights into the genetic, signaling, and mechanical control of tooth formation and functions. Evidence from fossils and non-model organisms has revealed that a common set of genes underlie tooth-forming potential of epithelia, and changes in signaling environments subsequently result in specialized dentitions, maintenance of dental stem cells, and other phenotypic adaptations. In addition to chemical signaling, tissue forces generated through epithelial contraction, differential growth, and skeletal constraints act in parallel to shape the tooth throughout development. Here recent advances in understanding dental development from these studies are reviewed and important gaps that can be filled through continued application of evolutionary and biomechanical approaches are discussed.


Asunto(s)
Evolución Biológica , Fósiles , Diente/embriología , Diente/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Diferenciación Celular , Proliferación Celular , Dentición , Peces/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Células Madre/fisiología , Diente/citología , Diente/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(9): E1641-E1650, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28196895

RESUMEN

The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.


Asunto(s)
Secuencias de Aminoácidos/fisiología , Esmalte Dental/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Amelogenina/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Biológica , Proteínas del Esmalte Dental/metabolismo , Durapatita/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Ratones , Unión Proteica/fisiología
12.
Development ; 143(14): 2677-88, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287806

RESUMEN

The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.


Asunto(s)
Bases de Datos Factuales , Cara/embriología , Investigadores , Cráneo/embriología , Animales , Inmunoprecipitación de Cromatina , Biología Computacional , Genómica , Humanos , Ratones , Modelos Animales , Pez Cebra
13.
Development ; 143(22): 4115-4126, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27660324

RESUMEN

Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.


Asunto(s)
Autorrenovación de las Células/genética , Proteínas de Homeodominio , Incisivo/embriología , Factor de Unión 1 al Potenciador Linfoide , Odontogénesis/genética , Factores de Transcripción SOXB1 , Células Madre/fisiología , Factores de Transcripción , Animales , Células Cultivadas , Embrión de Mamíferos , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Incisivo/crecimiento & desarrollo , Incisivo/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
14.
Am J Med Genet A ; 179(5): 864-869, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793834

RESUMEN

The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, postdoctoral researchers, medical and dental practitioners, scientists, and academicians who possess an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology.


Asunto(s)
Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/terapia , Biología Evolutiva , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Modelos Biológicos , Organogénesis
15.
Int J Mol Sci ; 20(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072004

RESUMEN

Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.


Asunto(s)
Familia 26 del Citocromo P450/genética , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Ácido Retinoico 4-Hidroxilasa/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Embrión de Mamíferos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Organogénesis/genética , Transducción de Señal/genética , Diente/crecimiento & desarrollo , Diente/metabolismo , Tretinoina/metabolismo
16.
J Biol Chem ; 292(36): 15062-15069, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28733464

RESUMEN

An important event in organogenesis is the formation of signaling centers, which are clusters of growth factor-secreting cells. In the case of tooth development, sequentially formed signaling centers known as the initiation knot (IK) and the enamel knot (EK) regulate morphogenesis. However, despite the importance of signaling centers, their origin, as well as the fate of the cells composing them, remain open questions. Here, using lineage tracing of distinct epithelial populations, we found that the EK of the mouse incisor is derived de novo from a group of SRY-box 2 (Sox2)-expressing cells in the posterior half of the tooth germ. Specifically, EK progenitors are located in the posterior ventral basal layer, as demonstrated by DiI labeling of cells. Lineage tracing the formed EK with ShhCreER , which encodes an inducible Cre recombinase under the control of the Sonic hedgehog promoter, at subsequent developmental stages showed that, once formed, some EK cells in the incisor give rise to differentiated cells, whereas in the molar, EK cells give rise to the buccal secondary EK. This work thus establishes the developmental origin as well as the fate of the EK and reveals two strategies for the emergence of serially formed signaling centers: one through de novo establishment and the other by incorporation of progeny from previously formed signaling centers.


Asunto(s)
Linaje de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transducción de Señal , Diente/citología , Diente/crecimiento & desarrollo , Animales , Rastreo Celular , Ratones , Ratones Endogámicos C57BL , Diente/metabolismo
17.
Dev Dyn ; 246(6): 442-450, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28324646

RESUMEN

The developing tooth offers a model for the study of ectodermal appendage organogenesis. The signaling networks that regulate tooth development have been intensively investigated, but how cell biological responses to signaling pathways regulate dental morphogenesis remains an open question. The increasing use of ex vivo imaging techniques has enabled live tracking of cell behaviors over time in high resolution. While recent studies using these techniques have improved our understanding of tooth morphogenesis, important gaps remain that require additional investigation. In addition, some discrepancies have arisen between recent studies, and resolving these will advance our knowledge of tooth development. Developmental Dynamics 246:442-450, 2016. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Odontogénesis , Diente/crecimiento & desarrollo , Humanos , Imagenología Tridimensional , Morfogénesis , Transducción de Señal
18.
Evol Dev ; 18(1): 31-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26086993

RESUMEN

Mammalian dental morphology is under strong evolutionary pressure because of its importance for mastication and diet. While the mechanisms underlying tooth development have been widely studied in model organisms, the role of genetic regulatory elements in patterning the different elements of the occlusal surface and crown height across species is not well understood. Previous studies showed that Fibroblast Growth Factor (FGF) genes are important regulators of tooth development that influence morphological variation. We hypothesized that inter-specific variation in rodent dental morphology could be governed by nucleotide variation in genetic regulatory elements that modulate the spatial and temporal expression of the genes encoding FGF signaling molecules. In this study, we compared the variation in dental morphology across nine taxa of rodents to the variation in sequences of non-coding evolutionary conserved regions (ECRs) of Fgf3, 4, 8, 9, and 10. We correlated the variation in molar tooth cusp shape and the evolution of high molar crowns (hypsodonty) to the patterns of sequence variation in two ECRs, Fgf10ECR3, and Fgf9ECR1, respectively. By conducting luciferase and electrophoretic mobility shift assays, we determined that these ECRs could function as enhancers. These data suggest that emergence of hypsodonty and occlusal cusp patterning may have happened through the evolutionary changes in enhancers, such as Fgf9ECR1 and Fgf10ECR3, which affected the expression of major signaling molecules involved in tooth development.


Asunto(s)
Evolución Biológica , Factores de Crecimiento de Fibroblastos/genética , Diente/fisiología , Vertebrados/genética , Animales , Secuencia Conservada , Diente Molar/anatomía & histología , Diente Molar/fisiología , Filogenia , Diente/anatomía & histología , Vertebrados/clasificación , Vertebrados/fisiología
19.
Hum Mol Genet ; 23(3): 682-92, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24057668

RESUMEN

RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo.


Asunto(s)
Síndrome de Costello/metabolismo , Esmalte Dental/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adolescente , Adulto , Ameloblastos/metabolismo , Ameloblastos/patología , Animales , Estudios de Casos y Controles , Polaridad Celular , Niño , Preescolar , Estudios de Cohortes , Síndrome de Costello/genética , Esmalte Dental/efectos de los fármacos , Esmalte Dental/metabolismo , Esmalte Dental/ultraestructura , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Lactante , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Ratones , Ratones Mutantes , Microscopía Electrónica de Rastreo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética , Adulto Joven
20.
Development ; 140(16): 3348-59, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863486

RESUMEN

The mouse incisor is a remarkable tooth that grows throughout the animal's lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Amelogenina/genética , Amelogenina/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Adhesión Celular , Esmalte Dental/metabolismo , Esmalte Dental/patología , Embrión de Mamíferos/metabolismo , Epitelio/metabolismo , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Incisivo/citología , Incisivo/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteína Smad1/genética , Proteína Smad1/metabolismo , Nicho de Células Madre , Factores de Transcripción/genética , Transcripción Genética , Proteína del Homeodomínio PITX2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA