Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Soft Matter ; 20(8): 1736-1745, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38288734

RESUMEN

Hydrogel microparticles ranging from 0.1-100 µm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 µm and 82 ± 25 µm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.


Asunto(s)
Hidrogeles , Microgeles , Animales , Caballos , Hidrogeles/química , Liposomas , Microfluídica , Reología
2.
Nat Mater ; 21(4): 390-397, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361951

RESUMEN

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Asunto(s)
Materiales Biocompatibles , Biología Sintética , Polímeros
3.
Soft Matter ; 18(16): 3177-3192, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380571

RESUMEN

Collagen-like peptides (CLP) are multifunctional materials garnering a lot of recent interest from the biomaterials community due to their hierarchical assembly and tunable physicochemical properties. In this work, we present a computational study that links the design of CLP heterotrimers to the thermal stability of the triple helix and their self-assembly into fibrillar aggregates and percolated networks. Unlike homotrimeric helices, the CLP heterotrimeric triple helices in this study are made of CLP strands of different chain lengths that result in 'sticky' ends with available hydrogen bonding groups. These 'sticky' ends at one end or both ends of the CLP heterotrimer then facilitate inter-helix hydrogen bonding leading to self-assembly into fibrils (clusters) and percolated networks. We consider the cases of three sticky end lengths - two, four, and six repeat units - present entirely on one end or split between two ends of the CLP heterotrimer. We observe in CLP heterotrimer melting curves generated using coarse grained Langevin dynamics simulations at low CLP concentration that increasing sticky end length results in lower melting temperatures for both one and two sticky ended CLP designs. At higher CLP concentrations, we observe non-monotonic trends in cluster sizes with increasing sticky end length with one sticky end but not for two sticky ends with the same number of available hydrogen bonding groups as the one sticky end; this nonmonotonicity stems from the formation of turn structures stabilized by hydrogen bonds at the single, sticky end for sticky end lengths greater than four repeat units. With increasing CLP concentration, heterotrimers also form percolated networks with increasing sticky end length with a minimum sticky end length of four repeat units required to observe percolation. Overall, this work informs the design of thermoresponsive, peptide-based biomaterials with desired morphologies using strand length and dispersity as a handle for tuning thermal stability and formation of supramolecular structures.


Asunto(s)
Colágeno , Simulación de Dinámica Molecular , Materiales Biocompatibles , Colágeno/química , Péptidos/química , Temperatura
4.
Soft Matter ; 17(7): 1985-1998, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434255

RESUMEN

Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of natural and non-natural amino acid substitutions via incorporation of charged residues and a reactive handle on the thermal stability and assembly of multifunctional collagen mimetic peptides (CMPs). Experimentally, we observed inclusion of charged residues significantly decreased the melting temperature of CMP triple helices with further destabilization upon inclusion of the reactive handle. Atomistic simulations of a single CMP triple helix in explicit water showed increased residue-level and helical structural fluctuations caused by the inclusion of the reactive handle; however, these atomistic simulations cannot be used to predict changes in CMP melting transition. Coarse-grained (CG) simulations of CMPs at experimentally relevant solution conditions, showed, qualitatively, the same trends as experiments in CMP melting transition temperature with CMP design. These simulations show that when charged residues are included electrostatic repulsions significantly destabilize the CMP triple helix and that an additional inclusion of a reactive handle does not significantly change the melting transition. Based on findings from both experiments and simulations, the sequence design was refined for increased CMP triple helix thermal stability, and the reactive handle was utilized for the incorporation of the assembled CMPs within covalently crosslinked hydrogels. Overall, a unique approach was established for predicting stability of CMP triple helices for various sequences prior to synthesis, providing molecular insights for sequence design towards the creation of bulk nanostructured soft biomaterials.


Asunto(s)
Colágeno , Péptidos , Materiales Biocompatibles , Biomimética , Hidrogeles
5.
Org Biomol Chem ; 16(12): 2164-2169, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29521395

RESUMEN

A method of cysteine alkylation using cyclopropenyl ketones is described. Due to the significant release of cyclopropene strain energy, reactions of thiols with cyclopropenyl ketones are both fast and irreversible and give rise to stable conjugate addition adducts. The resulting cyclopropenyl ketones have a low molecular weight and allow for simple attachment of amides via N-hydroxysuccinimide (NHS)-esters. While cyclopropenyl ketones do display slow background reactivity toward water, labeling by thiols is much more rapid. The reaction of a cyclopropenyl ketone with glutathione (GSH) proceeds with a rate of 595 M-1 s-1 in PBS at pH 7.4, which is considerably faster than α-halocarbonyl labeling reagents, and competitive with maleimide/thiol couplings. The method has been demonstrated in protein conjugation, and an arylthiolate conjugate was shown to be stable upon prolonged incubation in either GSH or human plasma. Finally, cyclopropenyl ketones were used to create PEG-based hydrogels that are stable to prolonged incubation in a reducing environment.


Asunto(s)
Ciclopropanos/química , Cisteína/química , Cetonas/química , Alquilación , Glutatión/química , Humanos , Hidrogeles/síntesis química , Polietilenglicoles , Coloración y Etiquetado , Compuestos de Sulfhidrilo/química , Factores de Tiempo
6.
Biomacromolecules ; 18(10): 3131-3142, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28850788

RESUMEN

Hydrogel-based depots are of growing interest for release of biopharmaceuticals; however, a priori selection of hydrogel compositions that will retain proteins of interest and provide desired release profiles remains elusive. Toward addressing this, in this work, we have established a new tool for the facile assessment of protein release from hydrogels and applied it to evaluate the effectiveness of mesh size estimations on predicting protein retention or release. Poly(ethylene glycol) (PEG)-based hydrogel depots were formed by photoinitiated step growth polymerization of four-arm PEG functionalized with norbornene (PEG-norbornene, 4% w/w to 20% w/w, Mn ∼ 5 to 20 kDa) and different dithiol cross-linkers (PEG Mn ∼ 1.5 kDa or enzymatically degradable peptide), creating well-defined, robust materials with a range of mesh sizes estimated with Flory-Rehner or rubber elasticity theory (∼5 to 15 nm). A cocktail of different model proteins was released from compositions of interest, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to facilely and quantitatively analyze temporal release profiles. Mesh size was predictive of retention of relatively large proteins and release of relatively small proteins. Proteins with diameters comparable to the mesh size, which is often the case for growth factors, were released by hindered diffusion and required experimental assessment of retention and release. With this knowledge, hydrogels were designed for the controlled release of a therapeutically relevant growth factor, PDGF-BB.


Asunto(s)
Liberación de Fármacos , Hidrogeles/química , Proteínas Proto-Oncogénicas c-sis/química , Becaplermina , Reactivos de Enlaces Cruzados/química , Hidrogeles/síntesis química , Norbornanos/química , Polietilenglicoles/química , Porosidad
7.
Chem Soc Rev ; 42(17): 7335-72, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23609001

RESUMEN

Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications.


Asunto(s)
Hidrogeles/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Microambiente Celular , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Hidrogeles/química , Polímeros/química , Ingeniería de Tejidos
8.
J Mater Chem B ; 12(38): 9600-9621, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39211975

RESUMEN

The demand for synthetic soft materials with bioinspired structures continues to grow. Material applications range from in vitro and in vivo tissue mimics to therapeutic delivery systems, where well-defined synthetic building blocks offer precise and reproducible property control. This work examines a synthetic assembling peptide, specifically a multifunctional collagen mimetic peptide (mfCMP) either alone or with reactive macromers, for the creation of responsive hydrogels that capture aspects of soft collagen-rich tissues. We first explored how buffer choice impacts mfCMP hierarchical assembly, in particular, peptide melting temperature, fibril morphology, and ability to form physical hydrogels. Assembly in physiologically relevant buffer resulted in collagen-like fibrillar structures and physically assembled hydrogels with shear-thinning (as indicated through strain-yielding) and self-healing properties. Further, we aimed to create fully synthetic, composite peptide-polymer hydrogels with dynamic responses to various stimuli, inspired by the extracellular matrix (ECM). Specifically, we established mfCMP-poly(ethylene glycol) (PEG) hydrogel compositions that demonstrate increasing non-linear viscoelasticity in response to applied strain as the amount of assembled mfCMP content increases. Furthermore, the thermal responsiveness of mfCMP physical crosslinks was harnessed to manipulate the composite hydrogel mechanical properties in response to changes in temperature. Finally, cells relevant in wound healing, human lung fibroblasts, were encapsulated within these peptide-polymer hydrogels to explore the impact of increased mfCMP, and the resulting changes in viscoelasticity, on cell response. This work establishes mfCMP building blocks as versatile tools for creating hybrid and adaptable systems with applications ranging from injectable shear-thinning materials to responsive interfaces and synthetic ECMs for tissue engineering.


Asunto(s)
Materiales Biomiméticos , Colágeno , Hidrogeles , Péptidos , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Péptidos/química , Péptidos/farmacología , Humanos , Colágeno/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/síntesis química , Técnicas de Cultivo de Célula , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química
9.
ACS Macro Lett ; 12(6): 725-732, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37195203

RESUMEN

Enzymatically degradable peptides are commonly used as linkers within hydrogels for biological applications; however, controlling the degradation of these engineered peptides with different contexts and cell types can prove challenging. In this work, we systematically examined the substitution of d-amino acids (D-AAs) for different l-amino acids in a peptide sequence commonly utilized in enzymatically degradable hydrogels (VPMS↓MRGG) to create peptide linkers with a range of different degradation times, in solution and in hydrogels, and investigated the cytocompatibility of these materials. We found that increasing the number of D-AA substitutions increased the resistance to enzymatic degradation both for free peptide and peptide-linked hydrogels; yet, this trend also was accompanied by increased cytotoxicity in cell culture. This work demonstrates the utility of D-AA-modified peptide sequences to create tunable biomaterials platforms tempered by considerations of cytotoxicity, where careful selection and optimization of different peptide designs is needed for specific biological applications.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/farmacología , Sustitución de Aminoácidos , Péptidos/química , Materiales Biocompatibles , Microambiente Celular
10.
Adv Healthc Mater ; 11(7): e2101947, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936227

RESUMEN

Engineered hydrogels are increasingly used as extracellular matrix (ECM) surrogates for probing cell function in response to ECM remodeling events related to injury or disease (e.g., degradation followed by deposition/crosslinking). Inspired by these events, this work establishes an approach for pseudo-reversible mechanical property modulation in synthetic hydrogels by integrating orthogonal, enzymatically triggered crosslink degradation, and light-triggered photopolymerization stiffening. Hydrogels are formed by a photo-initiated thiol-ene reaction between multiarm polyethylene glycol and a dually enzymatically degradable peptide linker, which incorporates a thrombin-degradable sequence for triggered softening and a matrix metalloproteinase (MMP)-degradable sequence for cell-driven remodeling. Hydrogels are stiffened by photopolymerization using a flexible, MMP-degradable polymer-peptide conjugate and multiarm macromers, increasing the synthetic matrix crosslink density while retaining degradability. Integration of these tools enables sequential softening and stiffening inspired by matrix remodeling events within loose connective tissues (Young's modulus (E) ≈5 to 1.5 to 6 kPa with >3x ΔE). The cytocompatibility and utility of this approach is examined with breast cancer cells, where cell proliferation shows a dependence on the timing of triggered softening. This work provides innovative tools for 3D dynamic property modulation that are synthetically accessible and cell compatible.


Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/metabolismo , Hidrogeles/química , Metaloproteinasas de la Matriz/metabolismo , Péptidos/química , Polietilenglicoles/química
11.
ACS Biomater Sci Eng ; 7(9): 4175-4195, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34283566

RESUMEN

Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Colágeno , Péptidos , Diálisis Renal
12.
ACS Biomater Sci Eng ; 7(5): 1742-1764, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33356134

RESUMEN

The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.


Asunto(s)
COVID-19 , Pandemias , Materiales Biocompatibles , Humanos , Inmunidad , SARS-CoV-2
13.
Biomater Sci ; 8(5): 1256-1269, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31854388

RESUMEN

Approaches for the creation of soft materials, particularly hydrogels, with hierarchical structure are of interest in a variety of applications owing to their unique properties. In the context of tissue mimics, hydrogels with multiscale structures more accurately capture the complexities of tissues within the body (e.g., fibrous collagen-rich microenvironments). However, cytocompatible fabrication of such materials with hierarchical structures and independent control of mechanical and biochemical properties remains challenging and is needed for probing and directing cell-microenvironment interactions for three-dimensional (3D) cell encapsulation and culture applications. To address this, we have designed innovative multifunctional assembling peptides: these unique peptides contain a core block that mimics the structure of collagen for achieving relevant melting temperatures; 'sticky' ends to promote assembly of long fibrils; and a biocompatible reactive handle that is orthogonal to assembly to allow the formation of desired multiscale structures and their subsequent rapid, light-triggered integration within covalently crosslinked synthetic hydrogels. Nano- to micro-fibrils were observed to form in physiologically-relevant aqueous solutions, where both underlying peptide chemical structure and assembly conditions were observed to impact the resulting fibril sizes. These assembled structures were 'locked' into place and integrated as linkers within cell-degradable, bioactive hydrogels formed with photoinitiated thiol-ene 'click' chemistry. Hydrogel compositions were identified for achieving robust mechanical properties like those of soft tissues while also retaining higher ordered structures after photopolymerization. The utility of these innovative materials for 3D cell culture was demonstrated with human mesenchymal stem cells, where cell morphologies reminiscent of responses to assembled native collagen were observed now with a fully synthetic material. Using a bottom-up approach, a new materials platform has been established that combines the advantageous properties of covalent and assembling chemistries for the creation of synthetic hydrogels with controllable nanostructure, mechanical properties, and biochemical content.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Péptidos/química , Materiales Biocompatibles/síntesis química , Supervivencia Celular , Células Cultivadas , Humanos , Hidrogeles/síntesis química , Péptidos/síntesis química , Programas Informáticos
14.
Chem Commun (Camb) ; 56(76): 11263-11266, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32820777

RESUMEN

Synthetic DNA analogues are of great interest for their application in information storage, therapeutics, and nanostructured materials, yet are often limited in scalability. Vinyl sulfonamide click nucleic acids (VS-CNAs) have been developed to overcome this limitation using the highly efficient thiol-Michael 'click' reaction. Utilizing all four nucleobases, sequence-defined click nucleic acids (CNAs) were synthesized using a simple and scalabale solution-phase approach. Employing a polyethylene glycol (PEG) support, synthesis of the CNA sequence, GATTACA, was achieved in high yields. CNA crosslinked hydrogels were assembled using multiarm PEG-CNAs resulting in materials that dynamically respond to temperature, strain, and competitive sequences.


Asunto(s)
ADN/química , Hidrogeles/química , Sulfonamidas/química , ADN/síntesis química , Hidrogeles/síntesis química , Ensayo de Materiales , Polietilenglicoles/química , Temperatura
15.
Colloids Surf B Biointerfaces ; 174: 483-492, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30497010

RESUMEN

Circulating tumor cells (CTCs) play a central role in cancer metastasis and represent a rich source of data for cancer prognostics and therapeutic guidance. Reliable CTC recovery from whole blood therefore promises a less invasive and more sensitive approach to cancer diagnosis and progression tracking. CTCs, however, are exceedingly rare in whole blood, making their quantitative recovery challenging. Several techniques capable of isolating these rare cells have been introduced and validated, yet most suffer from low CTC purity or viability, both of which are essential to develop a clinically viable CTC isolation platform. To address these limitations, we introduce a patterned, immunofunctional, photodegradable poly(ethylene glycol) (PEG) hydrogel capture surface for the isolation and selective release of rare cell populations. Flat and herringbone capture surfaces were successfully patterned via PDMS micromolding and photopolymerization of photolabile PEG hydrogels. Patterned herringbone surfaces, designed to convectively transport cells to the capture surface, exhibited improved capture density relative to flat surfaces for target cell capture from buffer, buffy coat, and whole blood. Uniquely, captured cells were released for collection by degrading the hydrogel capture surface with either bulk or targeted irradiation with cytocompatible doses of long wavelength UV light. Recovered cells remained viable following capture and release and exhibited similar growth rates as untreated control cells. The implementation of molded photodegradable PEG hydrogels as a CTC capture surface provides a micropatternable, cytocompatible platform that imparts the unique ability to recover pure, viable CTC samples by selectively releasing target cells.


Asunto(s)
Anticuerpos Inmovilizados/química , Antígenos de Neoplasias/inmunología , Separación Celular/métodos , Hidrogeles/química , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Polietilenglicoles/química , Anticuerpos Inmovilizados/inmunología , Materiales Biocompatibles/química , Separación Celular/instrumentación , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/inmunología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/inmunología , Fotólisis , Células Tumorales Cultivadas
16.
Biomater Sci ; 6(6): 1358-1370, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29675520

RESUMEN

Induced pluripotent stem cells (iPSCs) are of interest for the study of disease, where these cells can be derived from patients and have the potential to be differentiated into any cell type; however, three-dimensional (3D) culture and differentiation of iPSCs within well-defined synthetic matrices for these applications remains limited. Here, we aimed to establish synthetic cell-degradable hydrogels that allow precise presentation of specific biochemical cues for 3D culture of iPSCs with relevance for hypothesis testing and lineage-specific differentiation. We synthesized poly(ethylene glycol)-(PEG)-peptide-based hydrogels by photoinitiated step growth polymerization and used them to test the hypothesis that the viability of iPSCs within these matrices could be rescued with appropriate biochemical cues inspired by proteins and integrins important for iPSC culture on Matrigel. Specifically, we selected a range of motifs inspired by iPSC binding to Matrigel, including laminin-derived IKVAV and YIGSR, α5ß1-binding PHSRNG10RGDS, αvß5-binding KKQRFRHRNRKG, and RGDS that is known to bind a variety of integrins for generally promoting cell adhesion. YIGSR and PHSRNG10RGDS resulted in the highest iPSC viability, where binding of ß1 integrin was key, and these permissive compositions also allowed iPSC differentiation into neural progenitor cells (NPCs) (decreased oct4 expression and increased pax6 expression) in response to soluble factors. The resulting NPCs formed clusters of different sizes in response to each peptide, suggesting that matrix biochemical cues affect iPSC proliferation and clustering in 3D culture. In summary, we have established photopolymerizable synthetic matrices for the encapsulation, culture, and differentiation of iPSCs for studies of cell-matrix interactions and deployment in disease models.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Materiales Biocompatibles/síntesis química , Línea Celular , Supervivencia Celular , Células Inmovilizadas/citología , Células Inmovilizadas/metabolismo , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Humanos , Hidrogeles/síntesis química , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis , Norbornanos/síntesis química , Norbornanos/química , Péptidos/síntesis química , Péptidos/química , Procesos Fotoquímicos , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polimerizacion
17.
Biomaterials ; 178: 435-447, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29773227

RESUMEN

Controlled, three-dimensional (3D) cell culture systems are of growing interest for both tissue regeneration and disease, including cancer, enabling hypothesis testing about the effects of microenvironment cues on a variety of cellular processes, including aspects of disease progression. In this work, we encapsulate and culture in three dimensions different cancer cell lines in a synthetic extracellular matrix (ECM), using mild and efficient chemistry. Specifically, harnessing the nucleophilic addition of thiols to activated alkynes, we have created hydrogel-based materials with multifunctional poly(ethylene glycol) (PEG) and select biomimetic peptides. These materials have definable, controlled mechanical properties (G' = 4-10 kPa) and enable facile incorporation of pendant peptides for cell adhesion, relevant for mimicking soft tissues, where polymer architecture allows tuning of matrix degradation. These matrices rapidly formed in the presence of sensitive breast cancer cells (MCF-7) for successful encapsulation with high cell viability, greatly improved relative to that observed with the more widely used radically-initiated thiol-ene crosslinking chemistry. Furthermore, controlled matrix degradation by both bulk and local mechanisms, ester hydrolysis of the polymer network and cell-driven enzymatic hydrolysis of cell-degradable peptide, allowed cell proliferation and the formation of cell clusters within these thiol-yne hydrogels. These studies demonstrate the importance of chemistry in ECM mimics and the potential thiol-yne chemistry has as a crosslinking reaction for the encapsulation and culture of cells, including those sensitive to radical crosslinking pathways.


Asunto(s)
Neoplasias de la Mama/patología , Química Clic/métodos , Matriz Extracelular/química , Ensayo de Materiales , Compuestos de Sulfhidrilo/química , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Inmovilizadas/metabolismo , Femenino , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Polietilenglicoles/síntesis química , Polietilenglicoles/química
18.
Acta Biomater ; 56: 80-90, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28391052

RESUMEN

Hydrogels are facile architectures for the controlled presentation of proteins with far-reaching applications, from fundamental biological studies in three-dimensional culture to new regenerative medicine and therapeutic delivery strategies. Here, we demonstrate a versatile approach for spatially-defined presentation of engineered proteins within hydrogels through i) immobilization using bio-orthogonal strain-promoted alkyne-azide click chemistry and ii) dynamic protease-driven protein release using exogenously applied enzyme. Model fluorescent proteins were expressed using nonsense codon replacement to incorporate azide-containing unnatural amino acids in a site-specific manner toward maintaining protein activity: here, cyan fluorescent protein (AzCFP), mCherry fluorescent protein (AzmCh), and mCh decorated with a thrombin cut-site. (AzTMBmCh). Eight-arm poly(ethylene glycol) (PEG) was modified with dibenzylcyclooctyne (DBCO) groups and reacted with azide functionalized PEG in aqueous solution for rapid formation of hydrogels. Azide functionalized full-length fluorescent proteins were successfully incorporated into the hydrogel network by reaction with PEG-DBCO prior to gel formation. Temporal release and removal of select proteins (AzTMBmCh) was triggered with the application of thrombin and monitored in real-time with confocal microscopy, providing a responsive handle for controlling matrix properties. Hydrogels with regions of different protein compositions were created using a layering technique with thicknesses of hundreds of micrometers, affording opportunities for the creation of complex geometries on size scales relevant for controlling cellular microenvironments. STATEMENT OF SIGNIFICANCE: Controlling protein presentation within biomaterials is important for modulating interactions with biological systems. For example, native tissues are composed of subunits with different matrix compositions (proteins, stiffness) that dynamically interact with cells, influencing function and fate. Toward mimicking such temporally-regulated and spatially-defined microenvironments, we utilize bio-orthogonal click chemistry and protein engineering to create hydrogels with distinct regions of proteins and modify them over time. Through nonsense codon replacement, we site-specifically functionalize large proteins with i) azides for covalent conjugation and ii) an enzymatic cleavage site for user-defined release from hydrogels. Our results exemplify not only the ability to create unique bio-functionalized hydrogels with controlled mechanical properties, but also the potential for creating interesting interfaces for cell culture and tissue engineering applications.


Asunto(s)
Hidrogeles/química , Proteínas Luminiscentes/química , Polietilenglicoles/química , Trombina/química , Humanos , Proteínas Luminiscentes/genética
19.
Adv Healthc Mater ; 6(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29024487

RESUMEN

Injectable delivery systems that respond to biologically relevant stimuli present an attractive strategy for tailorable drug release. Here, the design and synthesis of unique polymers are reported for the creation of hydrogels that are formed in situ and degrade in response to clinically relevant endogenous and exogenous stimuli, specifically reducing microenvironments and externally applied light. Hydrogels are formed with polyethylene glycol and heparin-based polymers using a Michael-type addition reaction. The resulting hydrogels are investigated for the local controlled release of low molecular weight proteins (e.g., growth factors and cytokines), which are of interest for regulating various cellular functions and fates in vivo yet remain difficult to deliver. Incorporation of reduction-sensitive linkages and light-degradable linkages affords significant changes in the release profiles of fibroblast growth factor-2 (FGF-2) in the presence of the reducing agent glutathione or light, respectively. The bioactivity of the released FGF-2 is comparable to pristine FGF-2, indicating the ability of these hydrogels to retain the bioactivity of cargo molecules during encapsulation and release. Further, in vivo studies demonstrate degradation-mediated release of FGF-2. Overall, our studies demonstrate the potential of these unique stimuli-responsive chemistries for controlling the local release of low molecular weight proteins in response to clinically relevant stimuli.


Asunto(s)
Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Proteínas/farmacología , Adventicia/citología , Adventicia/efectos de los fármacos , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Glutatión/farmacología , Heparina/química , Humanos , Hidrogeles/química , Masculino , Maleimidas/farmacología , Persona de Mediana Edad , Peso Molecular , Polietilenglicoles/química , Polímeros/química
20.
J Vis Exp ; (115)2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27768057

RESUMEN

Click chemistries have been investigated for use in numerous biomaterials applications, including drug delivery, tissue engineering, and cell culture. In particular, light-mediated click reactions, such as photoinitiated thiol-ene and thiol-yne reactions, afford spatiotemporal control over material properties and allow the design of systems with a high degree of user-directed property control. Fabrication and modification of hydrogel-based biomaterials using the precision afforded by light and the versatility offered by these thiol-X photoclick chemistries are of growing interest, particularly for the culture of cells within well-defined, biomimetic microenvironments. Here, we describe methods for the photoencapsulation of cells and subsequent photopatterning of biochemical cues within hydrogel matrices using versatile and modular building blocks polymerized by a thiol-ene photoclick reaction. Specifically, an approach is presented for constructing hydrogels from allyloxycarbonyl (Alloc)-functionalized peptide crosslinks and pendant peptide moieties and thiol-functionalized poly(ethylene glycol) (PEG) that rapidly polymerize in the presence of lithium acylphosphinate photoinitiator and cytocompatible doses of long wavelength ultraviolet (UV) light. Facile techniques to visualize photopatterning and quantify the concentration of peptides added are described. Additionally, methods are established for encapsulating cells, specifically human mesenchymal stem cells, and determining their viability and activity. While the formation and initial patterning of thiol-alloc hydrogels are shown here, these techniques broadly may be applied to a number of other light and radical-initiated material systems (e.g., thiol-norbornene, thiol-acrylate) to generate patterned substrates.


Asunto(s)
Química Clic/métodos , Hidrogeles/química , Luz , Péptidos/química , Fotoquímica/métodos , Materiales Biocompatibles , Técnicas de Cultivo de Célula , Sistemas de Liberación de Medicamentos , Humanos , Células Madre Mesenquimatosas/citología , Polietilenglicoles/química , Polimerizacion , Compuestos de Sulfhidrilo/química , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA